

Page 1 of 81

Oracle Corporation
Oracle VM Server for SPARC 3.6 and Oracle

Solaris 11.4

Assurance Activity Report

Version 1.4

January 25, 2024

Document prepared by

www.lightshipsec.com

Page 2 of 81

Table of Contents
1 INTRODUCTION ... 4

1.1 EVALUATION IDENTIFIERS ... 4
1.2 EVALUATION METHODS ... 4
1.3 REFERENCE DOCUMENTS ... 6

2 EVALUATION ACTIVITIES FOR SFRS ... 7
2.1 SECURITY AUDIT (FAU) .. 7

2.1.1 FAU_GEN.1 Audit Data Generation .. 7
2.1.2 FAU_SAR.1 Audit Review ... 8
2.1.3 FAU_STG.1 Protected Audit Trail Storage .. 9
2.1.4 FAU_STG_EXT.1 Off-Loading of Audit Data ... 9

2.2 CRYPTOGRAPHIC SUPPORT (FCS) .. 11
2.2.1 FCS_CKM.1 Cryptographic Key Generation .. 11
2.2.2 FCS_CKM.2 Cryptographic Key Distribution.. 14
2.2.3 FCS_CKM_EXT.4 Cryptographic Key Destruction... 16
2.2.4 FCS_COP.1/Hash Cryptographic Operation (Hashing) 18
2.2.5 FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash Algorithms) 20
2.2.6 FCS_COP.1/Sig Cryptographic Operation (Signature Algorithms) 21
2.2.7 FCS_COP.1/UDE Cryptographic Operation (AES Data Encryption/Decryption)
 22
2.2.8 FCS_ENT_EXT.1 Entropy for Virtual Machines ... 29
2.2.9 FCS_RBG_EXT.1 Cryptographic Operation (Random Bit Generation) 30

2.3 USER DATA PROTECTION (FDP) ... 31
2.3.1 FDP_HBI_EXT.1 Hardware-Based Isolation Mechanisms 31
2.3.2 FDP_PPR_EXT.1 Physical Platform Resource Controls................................ 31
2.3.3 FDP_RIP_EXT.1 Residual Information in Memory .. 33
2.3.4 FDP_RIP_EXT.2 Residual Information on Disk ... 34
2.3.5 FDP_VMS_EXT.1 VM Separation ... 34
2.3.6 FDP_VNC_EXT.1 Virtual Networking Components 36

2.4 IDENTIFICATION AND AUTHENTICATION (FIA) .. 37
2.4.1 FIA_AFL_EXT.1 Authentication Failure Handling .. 37
2.4.2 FIA_UAU.5 Multiple Authentication Mechanisms ... 38
2.4.3 FIA_UIA_EXT.1 Administrator Identification and Authentication 39

2.5 SECURITY MANAGEMENT (FMT) ... 40
2.5.1 FMT_MOF_EXT.1 Management of Security Functions Behavior 40
2.5.2 FMT_SMO_EXT.1 Separation of Management and Operational Networks 41

2.6 PROTECTION OF THE TSF (FPT) ... 42
2.6.1 FPT_DVD_EXT.1 Non-Existence of Disconnected Virtual Devices 42
2.6.2 FPT_EEM_EXT.1 Execution Environment Mitigations 42
2.6.3 FPT_HAS_EXT.1 Hardware Assists .. 42
2.6.4 FPT_HCL_EXT.1 Hypercall Controls ... 43
2.6.5 FPT_RDM_EXT.1 Removable Devices and Media .. 43
2.6.6 FPT_TUD_EXT.1 Trusted Updates to the Virtualization System.................... 44
2.6.7 FPT_VDP_EXT.1 Virtual Device Parameters .. 46
2.6.8 FPT_VIV_EXT.1 VMM Isolation from VMs .. 47

2.7 TOE ACCESS (FTA) ... 48
2.7.1 FTA_TAB.1 TOE Access Banner ... 48

2.8 TRUSTED PATH/CHANNELS (FTP) .. 48
2.8.1 FTP_ITC_EXT.1 Trusted Channel Communications 48
2.8.2 FTP_UIF_EXT.1 User Interface: I/O Focus ... 49
2.8.3 FTP_UIF_EXT.2 User Interface: Identification of VM 49

3 EVALUATION ACTIVITIES FOR OPTIONAL REQUIREMENTS.. 51
4 EVALUATION ACTIVITIES FOR SELECTION-BASED REQUIREMENTS 52

Page 3 of 81

4.1.1 FCS_TLS_EXT.1 TLS Protocol ... 52
4.1.2 FCS_TLSC_EXT.1 TLS Client Protocol ... 52
4.1.3 FCS_SSH_EXT.1 SSH Protocol .. 60
4.1.4 FCS_SSHS_EXT.1 SSH Protocol - Server .. 67
4.1.5 FIA_PMG_EXT.1 Password Management ... 68
4.1.6 FIA_X509_EXT.1 X.509 Certificate Validation ... 69
4.1.7 FIA_X509_EXT.2 X.509 Certificate Authentication .. 72
4.1.8 FTP_TRP.1 Trusted Path .. 73

5 TOE SECURITY ASSURANCE REQUIREMENTS .. 75
5.1 CLASS ASE: SECURITY TARGET EVALUATION .. 75
5.2 CLASS ADV: DEVELOPMENT ... 75
5.3 CLASS AGD: GUIDANCE DOCUMENTS ... 75

5.3.1 AGD_OPE.1 Operational User Guidance .. 76
5.3.2 AGD_PRE.1 Preparative Procedures .. 77

5.4 CLASS ALC: LIFE-CYCLE SUPPORT .. 77
5.4.1 ALC_CMC.1 Labeling of the TOE .. 78
5.4.2 ALC_CMS.1 TOE CM Coverage ... 78
5.4.3 ALC_TSU_EXT.1 Timely Security Updates ... 79

5.5 CLASS ATE: TESTS .. 80
5.5.1 ATE_IND.1 Independent Testing – Conformance .. 80

5.6 CLASS AVA: VULNERABILITY ASSESSMENT ... 81

Page 4 of 81

1 Introduction

1 This Assurance Activity Report (AAR) documents the evaluation activities performed
by Lightship Security for the evaluation identified in Table 1: Evaluation Identifiers.
The AAR is produced in accordance with National Information Assurance Program
(NIAP) reporting guidelines.

1.1 Evaluation Identifiers

Table 1: Evaluation Identifiers

Scheme Canadian Common Criteria Scheme

Evaluation Facility Lightship Security

Developer/Sponsor Oracle Corporation

TOE Oracle VM Server for SPARC 3.6.2.0.57 and Oracle Solaris
11.4.57.0.1.144.3 with IDR 5391

Security Target Oracle VM Server for SPARC 3.6 and Oracle Solaris 11.4 Security
Target, v2.4, January 2024

Protection Profile [PP] NIAP Protection Profile for Virtualization, Version: 1.1, 2021-06-
14

[SV] NIAP PP-Module for Server Virtualization Systems, Version:
1.1, 2021-06-14

[CFG] PP-Configuration for Virtualization and Server Virtualization
Systems, Version: 1.0, 2021-06-04

[PKG_SSH] NIAP Functional Package for Secure Shell (SSH),
Version: 1.0, 2021-05-13

[PKG_TLS] NIAP Functional Package for Transport Layer Security
(TLS), Version: 1.1, 2019-03-01

1.2 Evaluation Methods

2 The evaluation was performed using the methods, tools and standards identified in
Table 2.

Table 2: Evaluation Methods

Evaluation Criteria CC v3.1R5

Evaluation Methodology CEM v3.1R5

CC and CEM addenda for Exact Conformance, Selection-Based
SFRs, and Optional SFRs, Version 0.5, May 2017

Supporting Documents Assurance Activities found in [PP], [SV-SD], [CFG], [PKG_SSH]
and [PKG_TLS]

Interpretations

Page 5 of 81

[PP] Applicable to Evaluation?

TD0615: Audit generation for
hypercalls implemented in HW

Yes.

TD0721: Mapping FTA_TAB.1
to Objective

Yes.

TD0742: Updates to Certificate
Revocation (FIA_X509_EXT.1)
for Base Virtualization PP v1.1

Yes.

[PKG_TLS]

TD0442: Updated TLS
Ciphersuites for TLS Package

Yes.

TD0469: Modification of test
activity for
FCS_TLSS_EXT.1.1 test 4.1

N/A. FCS_TLSS_EXT.1 not
claimed.

TD0499: Testing with pinned
certificates

Yes.

TD0513: CA Certificate loading Yes.

TD0726: Corrections to
(D)TLSS SFRs in TLS 1.1 FP

N/A. FCS_TLSS_EXT.1 and
FCS_DTLSS_EXT.1 not
claimed.

TD0739: PKG_TLS_V1.1 has
2 different publication dates

N/A. FCS_TLSS_EXT.1 not
claimed.

TD0770: TLSS.2 connection
with no client cert

N/A. FCS_TLSS_EXT.2 not
claimed.

TD0779: Updated Session
Resumption Support in TLS
package V1.1

N/A. FCS_TLSS_EXT.1 not
claimed.

[PKG_SSH]

TD0682: Addressing Ambiguity
in FCS_SSHS_EXT.1 Tests

Yes.

TD0695: Choice of 128 or 256
bit size in AES-CTR in SSH
Functional Package.

Yes.

TD0732: FCS_SSHS_EXT.1.3
Test 2 Update

Yes.

TD0777: Clarification to
Selections for Auditable
Events for FCS_SSH_EXT.1

Yes.

Page 6 of 81

Tools Please refer to the associated Test Plan document.

1.3 Reference Documents

Table 3: List of Reference Documents

Ref Document

[ST] Oracle VM Server for SPARC 3.6 and Oracle Solaris 11.4 Security Target,
v2.4, January 2024

[PP] NIAP Protection Profile for Virtualization, Version: 1.1, 2021-06-14

[SV] NIAP PP-Module for Server Virtualization Systems, Version: 1.1, 2021-06-14

[SV-SD] Supporting Document Mandatory Technical Document PP-Module for Server
Virtualization Systems, Version: 1.1, 2021-06-14

[CFG] PP-Configuration for Virtualization and Server Virtualization Systems, Version:
1.0, 2021-06-04

[PKG_SSH] NIAP Functional Package for Secure Shell (SSH), Version: 1.0, 2021-05-13

[PKG_TLS] NIAP Functional Package for Transport Layer Security (TLS), Version: 1.1,
2019-03-01

[AGD] Oracle VM Server for SPARC 3.6 and Oracle Solaris 11.4 Common Criteria
Guide, Version: 1.5, January 2024

[SPARC] Oracle VM Server for SPARC Release 3.6 Documentation –
https://docs.oracle.com/cd/E93612_01/

[T8LIB] Oracle SPARC T8 Servers Documentation Library –
https://docs.oracle.com/en/servers/sparc/t8/index.html

[SOLARIS] Oracle Solaris 11.4 Documentation Library –
https://docs.oracle.com/cd/E37838_01/

[VIOP] Logical Domains Virtual I/O Protocol Specification, revision v9, February 15,
2010

Proprietary annex

[SUN4V] Oracle UltraSPARC Virtual Machine Specification, version 3033604f0239 3.0-
draft7, Publication date 2012-03-13 19:43, available at:
https://sun4v.github.io/downloads/hypervisor-api-3.0draft7.pdf

Page 7 of 81

2 Evaluation Activities for SFRs

2.1 Security Audit (FAU)

2.1.1 FAU_GEN.1 Audit Data Generation

2.1.1.1 TSS

3 The evaluator shall check the TSS and ensure that it lists all of the auditable events
and provides a format for audit records. Each audit record format type shall be
covered, along with a brief description of each field. The evaluator shall check to
make sure that every audit event type mandated by the PP-Configuration is described
in the TSS.

Findings: The evaluator found that in section 6.1 of the [ST], the author refers the reader to
the table of auditable messages in section 5.3 of the [ST]. The evaluator checked
each auditable event in the FAU_GEN.1 table in section 5.3.1 of the [ST] and found
that all audit event types mandated by the PP are accounted for.

 [ST], section 6.1.1 states, “Refer to section 3.2.4.3 of the Oracle VM Server for
SPARC 3.6 and Oracle Solaris 11.4 Common Criteria Guide for material details on
audit record formats.” (n.b. document reference is referred to within this AAR as
[AGD].)

 Section 3.2.4.3 of the [AGD] discusses the use of praudit as a means to display the
information. The manual page for praudit(8) found in [SOLARIS] states:
“…interprets the data as audit trail records as defined in the audit.log(5) man page.”
The audit.log(5) man page, in turn provides the binary format of the logs, and
praudit describes the transformation process from binary to administrator-friendly
information while discussing each of the fields contained in the audit log data.

2.1.1.2 Guidance Documentation

4 The evaluator shall also make a determination of the administrative actions that are
relevant in the context of this PP-Configuration. The evaluator shall examine the
administrative guide and make a determination of which administrative commands,
including subcommands, scripts, and configuration files, are related to the
configuration (including enabling or disabling) of the mechanisms implemented in the
TOE that are necessary to enforce the requirements specified in the PP and PP-
Modules. The evaluator shall document the methodology or approach taken while
determining which actions in the administrative guide are security-relevant with
respect to this PP-Configuration.

Findings: The evaluator used the [AGD] and each of the additional resources provided in the
Oracle documentation library to successfully configure the mechanisms necessary
to enforce the requirements specified in the PP, Functional Packages and PP-
Modules, such that the claimed security functionality of the TOE was
exercised/demonstrated, including successful completion of all mandated testing
requirements, as described in the Test Plan.

 In doing so, the evaluator was able to determine that the administrative actions, that
are relevant in the context of this PP-Configuration, are those that are described
within sections 2, 3 and 4 of the [AGD], with additional information provided in the
Oracle documentation library.

Page 8 of 81

 The methodology used to determine which actions in the administrative guidance
were security-relevant with respect to this PP-Configuration involved reviewing the
claimed PP, Functional Packages, PP-Modules with the [ST] and attempting to use
the provided guidance resources to configure the TOE such that each SFR was met
as described above. Security-relevant commands were determined to be those that
are necessary for the TOE to meet a given SFR. The evaluator did not note any
areas where the mapping between administrator actions and SFRs were
ambiguous.

2.1.1.3 Tests

5 The evaluator shall test the TOE’s ability to correctly generate audit records by having
the TOE generate audit records for the events listed and administrative actions. For
administrative actions, the evaluator shall test that each action determined by the
evaluator above to be security relevant in the context of this PP is auditable. When
verifying the test results, the evaluator shall ensure the audit records generated
during testing match the format specified in the administrative guide, and that the
fields in each audit record have the proper entries.

6 Note that the testing here can be accomplished in conjunction with the testing of the
security mechanisms directly.

High-Level Test Description

Ensure each of the Mandatory and Selection-based auditable requirements are met by reviewing
the audit records generated during testing of the associated SFRs. Verify the audit records match
the format specified in the administrative guide, and that the fields in each audit record have the
proper entries.

PASS

2.1.2 FAU_SAR.1 Audit Review

2.1.2.1 Guidance Documentation

7 The evaluator shall review the operational guidance for the procedure on how to
review the audit records.

Findings: Section 3.2.4.3 of the [AGD] indicates audit records can be reviewed using the
 praudit and auditreduce commands.

2.1.2.2 Tests

8 The evaluator shall verify that the audit records provide all of the information specified
in FAU_GEN.1 and that this information is suitable for human interpretation. The
evaluation activity for this requirement is performed in conjunction with the evaluation
activity for FAU_GEN.1.

Findings: Please refer to the evaluation activities conducted as part of FAU_GEN.1.

Page 9 of 81

2.1.3 FAU_STG.1 Protected Audit Trail Storage

2.1.3.1 TSS

9 The evaluator shall ensure that the TSS describes how the audit records are
protected from unauthorized modification or deletion. The evaluator shall ensure that
the TSS describes the conditions that must be met for authorized deletion of audit
records.

Findings: Section 6.1.3 of the [ST] indicates that an authorized administrator is the only
subject permitted to delete audit records on the TOE.

2.1.3.2 Tests

10 The evaluator shall perform the following tests:

Test 1: The evaluator shall access the audit trail as an unauthorized Administrator
and attempt to modify and delete the audit records. The evaluator shall verify that
these attempts fail.

High-Level Test Description

For each of the audit log files, attempt to modify and delete them as an unprivileged user and show
the attempt is rejected.

PASS

11 Test 2: The evaluator shall access the audit trail as an authorized Administrator and
attempt to delete the audit records. The evaluator shall verify that these attempts
succeed. The evaluator shall verify that only the records authorized for deletion are
deleted.

High-Level Test Description

As an authorized administrator, delete logs found in /var/audit and /var/log and show the deletion
is successful.

PASS

2.1.4 FAU_STG_EXT.1 Off-Loading of Audit Data

2.1.4.1 FAU_STG_EXT.1.1 TSS

12 Protocols used for implementing the trusted channel must be selected in
FTP_ITC_EXT.1.

Findings: Section 6.1.4 of the [ST] indicates that TLS is used by the TSF to communicate with
the audit server. TLS is one of the protocols selected in FTP_ITC_EXT.1 in section
5.3.8 of the [ST].

13 The evaluator shall examine the TSS to ensure it describes the means by which the
audit data are transferred to the external audit server, and how the trusted channel is
provided.

Page 10 of 81

Findings: As per section 6.1.4 of the [ST], the TOE forwards logs to an external syslog server
in real-time using TLS.

2.1.4.2 FAU_STG_EXT.1.1 Guidance Documentation

14 The evaluator shall examine the operational guidance to ensure it describes how to
establish the trusted channel to the audit server, as well as describe any requirements
on the audit server (particular audit server protocol, version of the protocol required,
etc.), as well as configuration of the TOE needed to communicate with the audit
server.

Findings: Sections 3.2.4.6 and 4 of the [AGD] describe the audit server requirements,
necessary TOE configuration steps, and how to establish the trusted channel to the
audit server.

2.1.4.3 FAU_STG_EXT.1.1 Tests

15 Testing of the trusted channel mechanism is to be performed as specified in the
evaluation activities for FTP_ITC_EXT.1.

16 The evaluator shall perform the following test for this requirement:

 Test 1: The evaluator shall establish a session between the TOE and the audit
server according to the configuration guidance provided. The evaluator shall then
examine the traffic that passes between the audit server and the TOE during
several activities of the evaluator’s choice designed to generate audit data to be
transferred to the audit server. The evaluator shall observe that these data are
not able to be viewed in the clear during this transfer, and that they are
successfully received by the audit server. The evaluator shall record the particular
software (name, version) used on the audit server during testing.

High-Level Test Description

Login and logout of the TOE. Show that TLS records are generated between the TOE and the
Syslog receiver. Show that the audit data cannot be seen in plaintext on the wire and that the user’s
password is not exposed in the log messages.

PASS

2.1.4.4 FAU_STG_EXT.1.2 TSS

17 The evaluator shall examine the TSS to ensure it describes what happens when the
local audit data store is full.

Findings: Section 6.1.1 of the [ST] indicates that when the TOE’s local audit space is
exhausted, the TOE will count dropped audit events. When only 1% of the audit
disk storage remains, the TOE will raise a warning.

2.1.4.5 FAU_STG_EXT.1.2 Guidance Documentation

18 The evaluator shall also examine the operational guidance to determine that it
describes the relationship between the local audit data and the audit data that are
sent to the audit log server. For example, when an audit event is generated, is it
simultaneously sent to the external server and the local store, or is the local store
used as a buffer and “cleared” periodically by sending the data to the audit server.

Page 11 of 81

Findings: The evaluator consulted the man pages for rsyslog(8) and rsyslog.conf(5) found under
Sections 5 and 8 of [SOLARIS] / Oracle Solaris Reference Manuals.

 The man pages direct an administrator to review the rsyslog distribution
documentation at https://rsyslog.com/doc for the current revision (v8-stable). This led
the evaluator to the following documentation https://www.rsyslog.com/doc/v8-
stable/tutorials/reliable_forwarding.html and https://www.rsyslog.com/doc/v8-
stable/concepts/queues.html which describe the queueing mechanisms in use.

 The evaluator considered the information and found that rsyslog queues information
in-memory unless configured for a disk-queue. The queue is emptied to the remote
endpoint as simultaneously as possible, with exceptions when the remote server is
down, or the queue is backed up due to excessive size or other performance issues.

2.1.4.6 FAU_STG_EXT.1.2 Tests

19 The evaluator shall perform operations that generate audit data and verify that this
data is stored locally. The evaluator shall perform operations that generate audit data
until the local storage space is exceeded and verifies that the TOE complies with the
behavior defined in the ST for FAU_STG_EXT.1.2.

High-Level Test Description

Review the audit records on the TOE. Use a tool to fill up the local audit space and subsequently
execute actions that would result in auditable events. Review the audit records and verify the TOE
dropped the recent audit data, as described in the [ST].

PASS

2.2 Cryptographic Support (FCS)

2.2.1 FCS_CKM.1 Cryptographic Key Generation

2.2.1.1 TSS

20 The evaluator shall ensure that the TSS identifies the key sizes supported by the
TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS
to verify that it identifies the usage for each scheme.

Findings: Section 6.2.1 of the [ST] claims that RSA 2048- and 3072-bit keys are supported. The
TOE supports ECDSA keys of size P-256 and P-384. It also claims in the same
section that FFC schemes using safe-primes are supported. Finally, DH group 14 is
supported.

 The key generation scheme usages are clearly delineated in the table in section 6.2.1
of the [ST] and these are consistent with the remaining SFR claims.

2.2.1.2 Guidance Documentation

21 The evaluator shall verify that the AGD guidance instructs the administrator how to
configure the TOE to use the selected key generation scheme(s) and key size(s) for
all uses defined in this PP.

Findings: Sections 3.3-3.3.1 and 4.2 of the [AGD] describe how to configure the TOE to use
the selected key generation schemes and key sizes for the TOE’s SSH server and
TLS client, respectively.

Page 12 of 81

2.2.1.3 Tests

22 Note: The following tests require the developer to provide access to a test platform
that provides the evaluator with tools that are typically not found on factory products.

Key Generation for FIPS PUB 186-4 RSA Schemes

23 The evaluator shall verify the implementation of RSA Key Generation by the TOE
using the Key Generation test. This test verifies the ability of the TSF to correctly
produce values for the key components including the public verification exponent e,
the private prime factors p and q, the public modulus n and the calculation of the
private signature exponent d.

24 Key Pair generation specifies 5 ways (or methods) to generate the primes p and q.
These include:

 Random Primes:

 Provable primes
 Probable primes

 Primes with Conditions:

 Primes p1, p2, q1, q2, p and q shall all be provable primes
 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall

be probable primes
 Primes p1, p2, q1, q2, p and q shall all be probable primes

25 To test the key generation method for the Random Provable primes method and for
all the Primes with Conditions methods, the evaluator must seed the TSF key
generation routine with sufficient data to deterministically generate the RSA key pair.
This includes the random seeds, the public exponent of the RSA key, and the desired
key length. For each key length supported, the evaluator shall have the TSF generate
25 key pairs. The evaluator shall verify the correctness of the TSF’s implementation
by comparing values generated by the TSF with those generated from a known good
implementation.

Note: The TOE makes use of RSA key generation schemes for TLS and SSH. The RSA
key generation services are provided by A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate RSA key generation algorithms for the claimed key sizes and an operating
environment that corresponds to the TOE platform.

Key Generation for Elliptic Curve Cryptography (ECC)

FIPS 186-4 ECC Key Generation Test

26 For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall
require the implementation under test (IUT) to generate 10 private/public key pairs.
The private key shall be generated using an approved random bit generator (RBG).
To determine correctness, the evaluator shall submit the generated key pairs to the
public key verification (PKV) function of a known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

27 For each supported NIST curve (i.e., P-256, P-384 and P-521) the evaluator shall
generate 10 private/public key pairs using the key generation function of a known
good implementation and modify five of the public key values so that they are
incorrect, leaving five values unchanged (i.e., correct). The evaluator shall obtain in
response a set of 10 PASS/FAIL values.

Page 13 of 81

Note: The TOE makes use of ECC key generation schemes for SSH. The ECC key
generation services are provided by A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate ECC key generation algorithms for the claimed curves and an operating
environment that corresponds to the TOE platform.

Key Generation for Finite-Field Cryptography (FFC)

28 The evaluator shall verify the implementation of the Parameters Generation and the
Key Generation for FFC by the TOE using the Parameter Generation and Key
Generation test. This test verifies the ability of the TSF to correctly produce values
for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group
generator g, and the calculation of the private key x and public key y.

29 The Parameter generation specifies two ways (or methods) to generate the
cryptographic prime q and the field prime p:

 Primes q and p shall both be provable primes
 Primes q and field prime p shall both be probable primes

30 and two ways to generate the cryptographic group generator g:

 Generator g constructed through a verifiable process
 Generator g constructed through an unverifiable process.

31 The Key generation specifies two ways to generate the private key x:

 len(q) bit output of RBG where 1 <=x <= q-1
 len(q) + 64 bit output of RBG, followed by a mod q-1 operation and a +1

operation, where 1<= x<=q-1.

32 The security strength of the RBG must be at least that of the security offered by the
FFC parameter set.

33 To test the cryptographic and field prime generation method for the provable primes
method and the group generator g for a verifiable process, the evaluator must seed
the TSF parameter generation routine with sufficient data to deterministically
generate the parameter set.

34 For each key length supported, the evaluator shall have the TSF generate 25
parameter sets and key pairs. The evaluator shall verify the correctness of the TSF’s
implementation by comparing values generated by the TSF with those generated
from a known good implementation. Verification shall also confirm

 g != 0,1
 q divides p-1
 g^q mod p = 1
 g^x mod p = y

35 for each FFC parameter set and key pair.

Findings: The TOE makes use of FFC key generation schemes for TLS. The FFC key
generation services are provided by A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate FFC key generation algorithms for the claimed key sizes and an operating
environment that corresponds to the TOE platform.

Diffie-Hellman Group 14 and FFC Schemes using "safe-prime" groups

Page 14 of 81

36 Testing for FFC Schemes using Diffie-Hellman group 14 and "safe-prime" groups is
done as part of testing in FCS_CKM.2.1.

Findings: Please refer to FCS_CKM.2 for descriptions of testing DH group 14 for safe prime
groups.

2.2.2 FCS_CKM.2 Cryptographic Key Distribution

2.2.2.1 TSS

37 The evaluator shall ensure that the supported key establishment schemes
correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST
specifies more than one scheme, the evaluator shall examine the TSS to verify that
it identifies the usage for each scheme.

Findings: Section 5.3.2 of the [ST] claims RSA, ECDSA and FFC safe-prime key generation in
FCS_CKM.1.1. FCS_CKM.2.1 claims RSA, FFC safe-primes, and DH group 14 which
is correct as ECDSA is not used for key exchange, but rather SSH host public keys.
The [ST], in section 6.2.1, claims use of RSA, FFC safe-prime schemes and DH group
14 as key establishment schemes. The key establishment scheme usages are clearly
delineated in the table in section 6.2.1 of the [ST].

2.2.2.2 Guidance Documentation

38 The evaluator shall verify that the AGD guidance instructs the administrator how to
configure the TOE to use the selected key establishment schemes.

Findings: Sections 3.3-3.3.1 and 4.2 of the [AGD] describe how to configure the TOE to use the
selected key establishment schemes for the TOE’s SSH server and TLS client,
respectively.

2.2.2.3 Tests

Key Establishment Schemes

RSAES-PKCS1-v1_5 Key Establishment Schemes

39 The evaluator shall verify the correctness of the TSF’s implementation of RSAES-
PKCS1-v1_5 by using a known good implementation for each protocol selected in
FTP_ITC_EXT.1 that uses RSAES-PKCS1-v1_5.

Findings: Please see FCS_TLSC_EXT.1 for confirmation.

SP800-56A ECC Key Establishment Schemes

40 The evaluator shall verify a TOE’s implementation of SP800-56A key agreement
schemes using the following Function and Validity tests. These validation tests for
each key agreement scheme verify that a TOE has implemented the components of
the key agreement scheme according to the specifications in the Recommendation.
These components include the calculation of the DLC primitives (the shared secret
value Z) and the calculation of the derived keying material (DKM) via the Key
Derivation Function (KDF). If key confirmation is supported, the evaluator shall also
verify that the components of key confirmation have been implemented correctly,
using the test procedures described below. This includes the parsing of the DKM, the
generation of MACdata and the calculation of MACtag.

Page 15 of 81

Function Test

41 The Function test verifies the ability of the TOE to implement the key agreement
schemes correctly. To conduct this test, the evaluator shall generate or obtain test
vectors from a known good implementation of the TOE supported schemes. For each
supported key agreement scheme-key agreement role combination, KDF type, and,
if supported, key confirmation role- key confirmation type combination, the tester shall
generate 10 sets of test vectors. The data set consists of one set of domain parameter
values (FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These
keys are static, ephemeral, or both depending on the scheme being tested.

42 The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static
and/or ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the
Other Information field OI and TOE id fields.

43 If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only
the public keys and the hashed value of the shared secret.

44 The evaluator shall verify the correctness of the TSF’s implementation of a given
scheme by using a known good implementation to calculate the shared secret value,
derive the keying material DKM, and compare hashes or MAC tags generated from
these values.

45 If key confirmation is supported, the TSF shall perform the above for each
implemented approved MAC algorithm.

Validity Test

46 The Validity test verifies the ability of the TOE to recognize another party’s valid and
invalid key agreement results with or without key confirmation. To conduct this test,
the evaluator shall obtain a list of the supporting cryptographic functions included in
the SP800-56A key agreement implementation to determine which errors the TOE
should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC)
test vectors consisting of data sets including domain parameter values or NIST
approved curves, the evaluator’s public keys, the TOE’s public/private key pairs,
MACTag, and any inputs used in the KDF, such as the other info and TOE id fields.

47 The evaluator shall inject an error in some of the test vectors to test that the TOE
recognizes invalid key agreement results caused by the following fields being
incorrect: the shared secret value Z, the DKM, the other information field OI, the data
to be MACed, or the generated MACTag. If the TOE contains the full or partial (only
ECC) public key validation, the evaluator will also individually inject errors in both
parties’ static public keys, both parties’ ephemeral public keys and the TOE’s static
private key to assure the TOE detects errors in the public key validation function and
the partial key validation function (in ECC only). At least two of the test vectors shall
remain unmodified and therefore should result in valid key agreement results (they
should pass).

48 The TOE shall use these modified test vectors to emulate the key agreement scheme
using the corresponding parameters. The evaluator shall compare the TOE’s results
with the results using a known good implementation verifying that the TOE detects
these errors.

Findings: The TOE does not claim support for ECC key establishment schemes.

Diffie-Hellman Group 14

49 The evaluator shall verify the correctness of the TSF's implementation of Diffie-
Hellman group 14 by using a known good implementation for each protocol selected
in FTP_ITC_EXT.1 that uses Diffie-Hellman Group 14.

Page 16 of 81

Findings: Please see FCS_SSHS_EXT.1 for confirmation.

FFC Schemes using "safe-prime" groups (identified in Appendix D of SP 800-56A Revision 3)

50 The evaluator shall verify the correctness of the TSF's implementation of "safe-prime"
groups by using a known good implementation for each protocol selected in
FTP_ITC_EXT.1 that uses "safe-prime" groups. This test must be performed for each
"safe-prime" group that each protocol uses.

Findings: Please see FCS_TLSC_EXT.1 for confirmation.

2.2.3 FCS_CKM_EXT.4 Cryptographic Key Destruction

2.2.3.1 TSS

51 The evaluator shall check to ensure the TSS lists each type of key and its origin and
location in memory or storage. The evaluator shall verify that the TSS describes when
each type of key is cleared.

Findings: Section 6.2.2 of the [ST] provides a statement of the keys.

 Section 6.2.2 of the [ST] also indicates that keys stored in volatile storage are
destroyed upon removal of power; keys in non-volatile storage are destroyed when
the OS deletes them.

 Based on a review of the applicable cryptographic protocols and key usages, the
description appears to be complete and accurate: the [ST] claims TLS (as a non-
authenticating client), SSH (as a server) and AES (in support of ZFS). No other
encryption/decryption or digital signature generation services are claimed or
described in the [ST].

2.2.3.2 Tests

52 For each key clearing situation the evaluator shall perform one of the following
activities:

 The evaluator shall use appropriate combinations of specialized operational
or development environments, development tools (debuggers, emulators,
simulators, etc.), or instrumented builds (developmental, debug, or release)
to demonstrate that keys are cleared correctly, including all intermediate
copies of the key that may have been created internally by the TOE during
normal cryptographic processing.

 In cases where testing reveals that third-party software modules or
programming language run-time environments do not properly overwrite
keys, this fact must be documented. Likewise, it must be documented if there
is no practical way to determine whether such modules or environments
destroy keys properly.

 In cases where it is impossible or impracticable to perform the above tests,
the evaluator shall describe how keys are destroyed in such cases, to
include:

o Which keys are affected

Page 17 of 81

o The reasons why testing is impossible or impracticable

o Evidence that keys are destroyed appropriately (e.g., citations to
component documentation, component developer/vendor
attestation, component vendor test results)

o Aggravating and mitigating factors that may affect the timeliness or
execution of key destruction (e.g., caching, garbage collection,
operating system memory management)

53 Use of debug or instrumented builds of the TOE and TOE components is permitted
in order to demonstrate that the TOE takes appropriate action to destroy keys. These
builds should be based on the same source code as are release builds (of course,
with instrumentation and debug-specific code added).

Volatile Memory

High-Level Test Description

Using instrumented TLS and SSH clients, establish a TLS connection between the TOE and the
remote logging server and a SSH connection between the TOE and the evaluator’s workstation.
Record the TLS session key and SSH encryption keys, as output by the tools.

Prior to terminating the TLS and SSH sessions, dump the system memory pages to files using the
savecore utility. Search the dumped memory pages for the recorded TLS and SSH keys and verify
the keys are found.

Establish new TLS and SSH connections and record the keys, as was previously done. Terminate
the TLS and SSH sessions and subsequently dump the system memory pages. Search the dumped
memory pages for the recorded TLS and SSH keys, and verify the keys are not found.

PASS

Non-volatile Memory: SSH server key

High-Level Test Description

Construct an encrypted ZFS dataset using a KEK which is stored in a file. Store an SSH host private
key on the encrypted ZFS filesystem. Run an instance of the SSH daemon which uses a host-key
on the encrypted dataset. Unmount the ZFS dataset. Destroy the KEK file and attempt to remount
the encrypted dataset (it will fail). Rerun the SSH daemon instance and show it fails to load due to
a missing hostkey (due to a missing mount).

PASS

Non-volatile Memory: ZFS Data Encryption Key

High-Level Test Description

Construct an encrypted ZFS dataset using a KEK which is stored in a file. Write a file to the
encrypted ZFS filesystem and read the file to show that basic file operations work as expected.
Unmount the ZFS dataset and subsequently destroy the KEK. Attempt to remount the encrypted
dataset (it will fail). Attempt to read the previously created file and show it is not available (due to a
missing KEK/mount).

PASS

Page 18 of 81

2.2.4 FCS_COP.1/Hash Cryptographic Operation (Hashing)

2.2.4.1 TSS

54 The evaluator shall check that the association of the hash function with other TSF
cryptographic functions (for example, the digital signature verification function) is
documented in the TSS.

Findings: Section 6.2.3 of the [ST] claims that the hash function is used for HMAC services and
digital signature verification for trusted updates. These services are consistent with
the claims made in section 5 of the [ST].

2.2.4.2 Guidance Documentation

55 The evaluator checks the AGD documents to determine that any configuration that is
required to be done to configure the functionality for the required hash sizes is
present.

Findings: Sections 3.3.1 and 4.2 of the [AGD] describe how to configure the TOE to use the
selected hashing algorithms for the TOE’s SSH server and TLS client, respectively.

2.2.4.3 Tests

56 SHA-1 and SHA-2 Tests The TSF hashing functions can be implemented in one of
two modes. The first mode is the byte-oriented mode. In this mode the TSF only
hashes messages that are an integral number of bytes in length; i.e., the length (in
bits) of the message to be hashed is divisible by 8. The second mode is the bit-
oriented mode. In this mode the TSF hashes messages of arbitrary length. As there
are different tests for each mode, an indication is given in the following sections for
the bit-oriented vs. the byte-oriented test MACs.

57 The evaluator shall perform all of the following tests for each hash algorithm
implemented by the TSF and used to satisfy the requirements of this PP.

58 The following tests require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

59 Short Messages Test Bit-oriented Mode

60 The evaluators devise an input set consisting of m+1 messages, where m is the block
length of the hash algorithm. The length of the messages range sequentially from 0
to m bits. The message text shall be pseudorandomly generated. The evaluators
compute the message digest for each of the messages and ensure that the correct
result is produced when the messages are provided to the TSF.

61 Short Messages Test Byte-oriented Mode

62 The evaluators devise an input set consisting of m/8+1 messages, where m is the
block length of the hash algorithm. The length of the messages range sequentially
from 0 to m/8 bytes, with each message being an integral number of bytes. The
message text shall be pseudorandomly generated. The evaluators compute the
message digest for each of the messages and ensure that the correct result is
produced when the messages are provided to the TSF.

63 Selected Long Messages Test Bit-oriented Mode

Page 19 of 81

64 The evaluators devise an input set consisting of m messages, where m is the block
length of the hash algorithm. The length of the ith message is 512 + 99*i, where 1 ≤ i
≤ m. The message text shall be pseudorandomly generated. The evaluators compute
the message digest for each of the messages and ensure that the correct result is
produced when the messages are provided to the TSF.

65 Selected Long Messages Test Byte-oriented Mode

66 The evaluators devise an input set consisting of m/8 messages, where m is the block
length of the hash algorithm. The length of the ith message is 512 + 8*99*i, where 1
≤ i ≤ m/8. The message text shall be pseudorandomly generated. The evaluators
compute the message digest for each of the messages and ensure that the correct
result is produced when the messages are provided to the TSF.

67 Pseudorandomly Generated Messages Test

68 This test is for byte-oriented implementations only. The evaluators randomly generate
a seed that is n bits long, where n is the length of the message digest produced by
the hash function to be tested. The evaluators then formulate a set of 100 messages
and associated digests by following the algorithm provided in Figure 1 of [SHAVS].
The evaluators then ensure that the correct result is produced when the messages
are provided to the TSF.

69 SHA-3 Tests The tests below are derived from The Secure Hash Algorithm-3
Validation System (SHA3VS), Updated: April 7, 2016, from the National Institute of
Standards and Technology.

70 For each SHA-3-XXX implementation, XXX represents d, the digest length in bits.
The capacity, c, is equal to 2d bits. The rate is equal to 1600-c bits.

71 The TSF hashing functions can be implemented with one of two orientations. The first
is a bit-oriented mode that hashes messages of arbitrary length. The second is a byte-
oriented mode that hashes messages that are an integral number of bytes in length
(i.e., the length (in bits) of the message to be hashed is divisible by 8). Separate tests
for each orientation are given below.

72 The evaluator shall perform all of the following tests for each hash algorithm and
orientation implemented by the TSF and used to satisfy the requirements of this PP.
The evaluator shall compare digest values produced by a known-good SHA-3
implementation against those generated by running the same values through the
TSF.

Short Messages Test, Bit-oriented Mode

73 The evaluators devise an input set consisting of rate+1 short messages. The length
of the messages ranges sequentially from 0 to rate bits. The message text shall be
pseudorandomly generated. The evaluators compute the message digest for each of
the messages and ensure that the correct result is produced when the messages are
provided to the TSF. The message of length 0 is omitted if the TOE does not support
zero-length messages.

Short Messages Test, Byte-oriented Mode

74 The evaluators devise an input set consisting of rate/8+1 short messages. The length
of the messages ranges sequentially from 0 to rate/8 bytes, with each message being
an integral number of bytes. The message text shall be pseudorandomly generated.
The evaluators compute the message digest for each of the messages and ensure

Page 20 of 81

that the correct result is produced when the messages are provided to the TSF. The
message of length 0 is omitted if the TOE does not support zero-length messages.

Selected Long Messages Test, Bit-oriented Mode

75 The evaluators devise an input set consisting of 100 long messages ranging in size
from rate+ (rate+1) to rate+(100*(rate+1)), incrementing by rate+1. (For example,
SHA-3-256 has a rate of 1088 bits. Therefore, 100 messages will be generated with
lengths 2177, 3266, …, 109988 bits.) The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages
and ensure that the correct result is produced when the messages are provided to
the TSF.

Selected Long Messages Test, Byte-oriented Mode

76 The evaluators devise an input set consisting of 100 messages ranging in size from
(rate+ (rate+8)) to (rate+100*(rate+8)), incrementing by rate+8. (For example, SHA-
3-256 has a rate of 1088 bits. Therefore 100 messages will be generated of lengths
2184, 3280, 4376, …, 110688 bits.) The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages
and ensure that the correct result is produced when the messages are provided to
the TSF.

Pseudorandomly Generated Messages Monte Carlo) Test, Byte-oriented Mode

77 The evaluators supply a seed of d bits (where d is the length of the message digest
produced by the hash function to be tested. This seed is used by a pseudorandom
function to generate 100,000 message digests. One hundred of the digests (every
1000th digest) are recorded as checkpoints. The TOE then uses the same procedure
to generate the same 100,000 message digests and 100 checkpoint values. The
evaluators then compare the results generated to ensure that the correct result is
produced when the messages are generated by the TSF.

Findings: The TOE makes use of cryptographic hashing for digital signature verification of
trusted updates and in support of HMAC services. The hashing services are provided
by A4216 (https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate SHA- algorithms for the claimed key sizes and an operating environment
that corresponds to the TOE platform.

2.2.5 FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash
Algorithms)

2.2.5.1 TSS

78 The evaluator shall examine the TSS to ensure that it specifies the following values
used by the HMAC function: key length, hash function used, block size, and output
MAC length used.

Findings: Section 6.2.4 of the [ST] identifies the key length, hash function, block size and MAC
length output.

2.2.5.2 Tests

79 The following tests require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

Page 21 of 81

80 For each of the supported parameter sets, the evaluator shall compose 15 sets of
test data. Each set shall consist of a key and message data. The evaluator shall have
the TSF generate HMAC tags for these sets of test data. The resulting MAC tags shall
be compared to the result of generating HMAC tags with the same key and IV using
a known good implementation.

Findings: The TOE makes use of HMAC for TLS and SSH. This service is provided by A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate HMAC-SHA algorithms for the claimed key sizes and an operating
environment that corresponds to the TOE platform.

2.2.6 FCS_COP.1/Sig Cryptographic Operation (Signature Algorithms)

2.2.6.1 Tests

81 The following tests require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

ECDSA Algorithm Tests

ECDSA FIPS 186-4 Signature Generation Test

82 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,
the evaluator shall generate 10 1024-bit long messages and obtain for each message
a public key and the resulting signature values R and S. To determine correctness,
the evaluator shall use the signature verification function of a known good
implementation.

ECDSA FIPS 186-4 Signature Verification Test

83 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,
the evaluator shall generate a set of 10 1024-bit message, public key and signature
tuples and modify one of the values (message, public key or signature) in five of the
10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Findings: The TOE makes use of ECDSA signing and verification for SSH. These services are
provided by A4216 (https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate ECDSA signature generation and verification algorithms for the claimed
key sizes and an operating environment that corresponds to the TOE platform.

RSA Signature Algorithm Tests

Signature Generation Test

84 The evaluator shall verify the implementation of RSA Signature Generation by the
TOE using the Signature Generation Test. To conduct this test, the evaluator shall
generate or obtain 10 messages from a trusted reference implementation for each
modulus size/SHA combination supported by the TSF. The evaluator shall have the
TOE use their private key and modulus value to sign these messages.

85 The evaluator shall verify the correctness of the TSF’s signature using a known good
implementation and the associated public keys to verify the signatures.

Signature Verification Test

Page 22 of 81

86 The evaluator shall perform the Signature Verification test to verify the ability of the
TOE to recognize another party’s valid and invalid signatures. The evaluator shall
inject errors into the test vectors produced during the Signature Verification Test by
introducing errors in some of the public keys e, messages, IR format, or signatures.
The TOE attempts to verify the signatures and returns success or failure.

87 The evaluator shall use these test vectors to emulate the signature verification test
using the corresponding parameters and verify that the TOE detects these errors.

Findings: The TOE makes use of RSA signing and verification for TLS, SSH and trusted
updates. These services are provided by A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826). The evaluator verified the certificate includes the
appropriate RSA signature generation and verification algorithms for the claimed key
sizes and an operating environment that corresponds to the TOE platform.

2.2.7 FCS_COP.1/UDE Cryptographic Operation (AES Data
Encryption/Decryption)

2.2.7.1 Tests

88 The following tests require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

AES-CBC Tests

AES-CBC Known Answer Tests

89 There are four Known Answer Tests (KATs), described below. In all KATs, the
plaintext, ciphertext, and IV values shall be 128-bit blocks. The results from each test
may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the
evaluator shall compare the resulting values to those obtained by submitting the same
inputs to a known good implementation.

90 KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set
of 10 plaintext values and obtain the ciphertext value that results from AES-CBC
encryption of the given plaintext using a key value of all zeros and an IV of all zeros.
Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five
shall be encrypted with a 256-bit all-zeros key.

91 To test the decrypt functionality of AES-CBC, the evaluator shall perform the same
test as for encrypt, using 10 ciphertext values as input and AES-CBC decryption.

92 KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set
of 10 key values and obtain the ciphertext value that results from AES-CBC
encryption of an all-zeros plaintext using the given key value and an IV of all zeros.
Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys.

93 To test the decrypt functionality of AES-CBC, the evaluator shall perform the same
test as for encrypt, using an all-zero ciphertext value as input and AES-CBC
decryption.

94 KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the
two sets of key values described below and obtain the ciphertext value that results
from AES encryption of an all-zeros plaintext using the given key value and an IV of
all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall

Page 23 of 81

have 256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the
rightmost N-i bits be zeros, for i in [1,N].

95 To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets
of key and ciphertext value pairs described below and obtain the plaintext value that
results from AES-CBC decryption of the given ciphertext using the given key and an
IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit
key/ciphertext pairs, and the second set of key/ciphertext pairs shall have 256 256-
bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be ones and
the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall be
the value that results in an all-zeros plaintext when decrypted with its corresponding
key.

96 KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the
set of 128 plaintext values described below and obtain the two ciphertext values that
result from AES-CBC encryption of the given plaintext using a 128-bit key value of all
zeros with an IV of all zeros and using a 256-bit key value of all zeros with an IV of
all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be
ones and the rightmost 128-i bits be zeros, for i in [1,128].

97 To test the decrypt functionality of AES-CBC, the evaluator shall perform the same
test as for encrypt, using ciphertext values of the same form as the plaintext in the
encrypt test as input and AES-CBC decryption.

AES-CBC Multi-Block Message Test

98 The evaluator shall test the encrypt functionality by encrypting an i-block message
where 1 < i <=10. The evaluator shall choose a key, an IV and plaintext message of
length i blocks and encrypt the message, using the mode to be tested, with the chosen
key and IV. The ciphertext shall be compared to the result of encrypting the same
plaintext message with the same key and IV using a known good implementation.

99 The evaluator shall also test the decrypt functionality for each mode by decrypting an
i-block message where 1 < i <=10. The evaluator shall choose a key, an IV and a
ciphertext message of length i blocks and decrypt the message, using the mode to
be tested, with the chosen key and IV. The plaintext shall be compared to the result
of decrypting the same ciphertext message with the same key and IV using a known
good implementation.

100 AES-CBC Monte Carlo Tests

101 The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and
key 3-tuples. 100 of these shall use 128 bit keys, and 100 shall use 256 bit keys. The
plaintext and IV values shall be 128-bit blocks. For each 3-tuple, 1000 iterations shall
be run as follows:

Input: PT, IV, Key
for i = 1 to 1000:

 if i == 1:
 CT[1] = AES-CBC-Encrypt(Key, IV, PT)
 PT = IV
 else:
 CT[i] = AES-CBC-Encrypt(Key, PT)
 PT = CT[i-1]

102 The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that

trial. This result shall be compared to the result of running 1000 iterations with the
same values using a known good implementation.

Page 24 of 81

103 The evaluator shall test the decrypt functionality using the same test as for encrypt,
exchanging CT and PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

Findings: AES-CBC mode with 128-bit and 256-bit keys is claimed for SSH and TLS
functionality. The evaluator verified A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826) includes the appropriate AES-CBC encrypt and
decrypt algorithms for the claimed key sizes and an operating environment that
corresponds to the TOE platform.

AES-CCM Tests

104 The evaluator shall test the generation-encryption and decryption-verification
functionality of AES-CCM for the following input parameter and tag lengths:

128 bit and 256 bit keys

105 Two payload lengths. One payload length shall be the shortest supported payload
length, greater than or equal to zero bytes. The other payload length shall be the
longest supported payload length, less than or equal to 32 bytes (256 bits).

106 Two or three associated data lengths. One associated data length shall be 0, if
supported. One associated data length shall be the shortest supported payload
length, greater than or equal to zero bytes. One associated data length shall be the
longest supported payload length, less than or equal to 32 bytes (256 bits). If the
implementation supports an associated data length of 216 bytes, an associated data
length of 216 bytes shall be tested.

107 Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall
be tested.

108 Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be
tested.

109 To test the generation-encryption functionality of AES-CCM, the evaluator shall
perform the following four tests:

 Test 1. For EACH supported key and associated data length and ANY
supported payload, nonce and tag length, the evaluator shall supply one key
value, one nonce value and 10 pairs of associated data and payload values
and obtain the resulting ciphertext.

 Test 2. For EACH supported key and payload length and ANY supported
associated data, nonce and tag length, the evaluator shall supply one key
value, one nonce value and 10 pairs of associated data and payload values
and obtain the resulting ciphertext.

 Test 3. For EACH supported key and nonce length and ANY supported
associated data, payload and tag length, the evaluator shall supply one key
value and 10 associated data, payload and nonce value 3-tuples and obtain
the resulting ciphertext.

 Test 4. For EACH supported key and tag length and ANY supported
associated data, payload and nonce length, the evaluator shall supply one
key value, one nonce value and 10 pairs of associated data and payload
values and obtain the resulting ciphertext.

Page 25 of 81

110 To determine correctness in each of the above tests, the evaluator shall compare the
ciphertext with the result of generation-encryption of the same inputs with a known
good implementation.

111 To test the decryption-verification functionality of AES-CCM, for EACH combination
of supported associated data length, payload length, nonce length and tag length, the
evaluator shall supply a key value and 15 nonce, associated data and ciphertext 3-
tuples and obtain either a FAIL result or a PASS result with the decrypted payload.
The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set
of 15.

112 Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6 document
“Proposed Test vectors for IEEE 802.11 TGi”, dated September 10, 2002, Section
2.1 AES-CCMP Encapsulation Example and Section 2.2 Additional AES CCMP Test
Vectors to further verify the IEEE 802.11-2007 implementation of AES-CCMP.

Note: AES-CCM mode with 128-bit and 256-bit keys is claimed for ZFS functionality. The
evaluator verified A4216 (https://csrc.nist.gov/projects/cryptographic-algorithm-
validation-program/details?validation=36826) includes the appropriate AES-CCM
generation-encryption and verification-decryption algorithms for the claimed key sizes
and an operating environment that corresponds to the TOE platform.

AES-GCM Test

113 The evaluator shall test the authenticated encrypt functionality of AES-GCM for each
combination of the following input parameter lengths:

128 bit and 256 bit keys

114 Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer
multiple of 128 bits, if supported. The other plaintext length shall not be an integer
multiple of 128 bits, if supported.

115 Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall
be a non-zero integer multiple of 128 bits, if supported. One AAD length shall not be
an integer multiple of 128 bits, if supported.

116 Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths
tested.

117 The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD,
and IV tuples for each combination of parameter lengths above and obtain the
ciphertext value and tag that results from AES-GCM authenticated encrypt. Each
supported tag length shall be tested at least once per set of 10. The IV value may be
supplied by the evaluator, or the implementation being tested, as long as it is known.

118 The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag,
AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a
Pass/Fail result on authentication and the decrypted plaintext if Pass. The set shall
include five tuples that Pass and five that Fail.

119 The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To
determine correctness, the evaluator shall compare the resulting values to those
obtained by submitting the same inputs to a known good implementation.

Page 26 of 81

Findings: AES-GCM mode with 128-bit and 256-bit keys is claimed for ZFS, SSH and TLS
functionality. The evaluator verified the A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826) includes the appropriate AES-GCM encrypt and
decrypt algorithms for the claimed key sizes and an operating environment that
corresponds to the TOE platform.

XTS-AES Test

120 The evaluator shall test the encrypt functionality of XTS-AES for each combination of
the following input parameter lengths:

 256 bit (for AES-128) and 512 bit (for AES-256) keys

 Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall
be a non-zero integer multiple of 128 bits, if supported. One of the data unit
lengths shall be an integer multiple of 128 bits, if supported. The third data
unit length shall be either the longest supported data unit length or 216 bits,
whichever is smaller.

121 using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain
the ciphertext that results from XTS-AES encrypt.

122 The evaluator may supply a data unit sequence number instead of the tweak value if
the implementation supports it. The data unit sequence number is a base-10 number
ranging between 0 and 255 that implementations convert to a tweak value internally.

123 The evaluator shall test the decrypt functionality of XTS-AES using the same test as
for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt
with XTS-AES decrypt.

Note: XTS-AES is not supported by the TOE.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

124 The evaluator shall test the authenticated encryption functionality of AES-KW for
EACH combination of the following input parameter lengths:

 128 and 256 bit key encryption keys (KEKs)

 Three plaintext lengths. One of the plaintext lengths shall be two semi-
blocks (128 bits). One of the plaintext lengths shall be three semi-blocks (192
bits). The third data unit length shall be the longest supported plaintext length
less than or equal to 64 semi-blocks (4096 bits).

125 using a set of 100 key and plaintext pairs and obtain the ciphertext that results from
AES-KW authenticated encryption. To determine correctness, the evaluator shall use
the AES-KW authenticated-encryption function of a known good implementation.

126 The evaluator shall test the authenticated-decryption functionality of AES-KW using
the same test as for authenticated-encryption, replacing plaintext values with
ciphertext values and AES-KW authenticated-encryption with AES-KW
authenticated-decryption.

Page 27 of 81

127 The evaluator shall test the authenticated-encryption functionality of AES-KWP using
the same test as for AES-KW authenticated-encryption with the following change in
the three plaintext lengths:

128 One plaintext length shall be one octet. One plaintext length shall be 20 octets (160
bits).

129 One plaintext length shall be the longest supported plaintext length less than or equal
to 512 octets (4096 bits).

130 The evaluator shall test the authenticated-decryption functionality of AES-KWP using
the same test as for AES-KWP authenticated-encryption, replacing plaintext values
with ciphertext values and AES-KWP authenticated-encryption with AES-KWP
authenticated-decryption.

Note: AES-KW mode with 128-bit and 256-bit keys is claimed for ZFS functionality. The
evaluator verified the A4216 (https://csrc.nist.gov/projects/cryptographic-algorithm-
validation-program/details?validation=36826) includes the appropriate AES-GCM
authenticated-encryption and authenticated-decryption algorithms for the claimed key
sizes and an operating environment that corresponds to the TOE platform.

AES-CTR Test

 Test 1: Known Answer Tests (KATs)

There are four Known Answer Tests (KATs) described below. For all KATs,
the plaintext, initialization vector (IV), and ciphertext values shall be 128-bit
blocks. The results from each test may either be obtained by the validator
directly or by supplying the inputs to the implementer and receiving the
results in response. To determine correctness, the evaluator shall compare
the resulting values to those obtained by submitting the same inputs to a
known good implementation.

Test 1a: To test the encrypt functionality, the evaluator shall supply a set of
10 plaintext values and obtain the ciphertext value that results from
encryption of the given plaintext using a key value of all zeros and an IV of
all zeros. Five plaintext values shall be encrypted with a 128-bit all zeros key,
and the other five shall be encrypted with a 256-bit all zeros key. To test the
decrypt functionality, the evaluator shall perform the same test as for encrypt,
using 10 ciphertext values as input.

Test 1b: To test the encrypt functionality, the evaluator shall supply a set of
10 key values and obtain the ciphertext value that results from encryption of
an all zeros plaintext using the given key value and an IV of all zeros. Five of
the key values shall be 128-bit keys, and the other five shall be 256-bit keys.
To test the decrypt functionality, the evaluator shall perform the same test as
for encrypt, using an all zero ciphertext value as input.

Test 1c: To test the encrypt functionality, the evaluator shall supply the two
sets of key values described below and obtain the ciphertext values that
result from AES encryption of an all zeros plaintext using the given key values
and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and
the second shall have 256 256-bit keys. Key_i in each set shall have the
leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1, N]. To
test the decrypt functionality, the evaluator shall supply the two sets of key
and ciphertext value pairs described below and obtain the plaintext value that
results from decryption of the given ciphertext using the given key values and
an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit
key/ciphertext pairs, and the second set of key/ciphertext pairs shall have

Page 28 of 81

256 256-bit pairs. Key_i in each set shall have the leftmost i bits be ones and
the rightmost N-i bits be zeros for i in [1, N]. The ciphertext value in each pair
shall be the value that results in an all zeros plaintext when decrypted with
its corresponding key.

Test 1d: To test the encrypt functionality, the evaluator shall supply the set
of 128 plaintext values described below and obtain the two ciphertext values
that result from encryption of the given plaintext using a 128-bit key value of
all zeros and using a 256 bit key value of all zeros, respectively, and an IV of
all zeros. Plaintext value i in each set shall have the leftmost bits be ones and
the rightmost 128-i bits be zeros, for i in [1, 128]. To test the decrypt
functionality, the evaluator shall perform the same test as for encrypt, using
ciphertext values of the same form as the plaintext in the encrypt test as input.

 Test 2: Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block
message where 1 less-than i less-than-or-equal to 10. For each i the
evaluator shall choose a key, IV, and plaintext message of length i blocks
and encrypt the message, using the mode to be tested, with the chosen key.
The ciphertext shall be compared to the result of encrypting the same
plaintext message with the same key and IV using a known good
implementation. The evaluator shall also test the decrypt functionality by
decrypting an i-block message where 1 less-than i less-than-or-equal to 10.
For each i the evaluator shall choose a key and a ciphertext message of
length i blocks and decrypt the message, using the mode to be tested, with
the chosen key. The plaintext shall be compared to the result of decrypting
the same ciphertext message with the same key using a known good
implementation.

 Test 3: Monte-Carlo Test

For AES-CTR mode perform the Monte Carlo Test for ECB Mode on the
encryption engine of the counter mode implementation. There is no need to
test the decryption engine. The evaluator shall test the encrypt functionality
using 200 plaintext/key pairs. 100 of these shall use 128 bit keys, and 100 of
these shall use 256 bit keys. The plaintext values shall be 128-bit blocks. For
each pair, 1000 iterations shall be run as follows:

For AES-ECB mode
Input: PT, Key
for i = 1 to 1000:

CT[i] = AES-ECB-Encrypt(Key, PT)
PT = CT[i]

The ciphertext computed in the 1000th iteration is the result for that trial. This
result shall be compared to the result of running 1000 iterations with the same
values using a known good implementation.

Findings: AES-CTR mode with 128-bit and 256-bit keys is claimed for SSH functionality. The
evaluator verified the A4216 (https://csrc.nist.gov/projects/cryptographic-algorithm-
validation-program/details?validation=36826) includes the appropriate AES-CTR
encrypt and decrypt algorithms for the claimed key sizes and an operating
environment that corresponds to the TOE platform.

131 If "invoke platform-provided" is selected, the evaluator confirms that SSH connections
are only successful if appropriate algorithms and appropriate key sizes are
configured. To do this, the evaluator shall perform the following tests:

Page 29 of 81

 Test 1: [Conditional: TOE is an SSH server] The evaluator shall configure an
SSH client to connect with an invalid cryptographic algorithm and key size for
each listening SSH socket connection on the TOE. The evaluator initiates
SSH client connections to each listening SSH socket connection on the TOE
and observes that the connection fails in each attempt.

 Test 2: [Conditional: TOE is an SSH client] The evaluator shall configure a
listening SSH socket on a remote SSH server that accepts only invalid
cryptographic algorithms and keys. The evaluator uses the TOE to attempt
an SSH connection to this server and observes that the connection fails.

Findings: There is no option for “invoke platform-provided” in this SFR. This appears to be a
copy/paste from another Protection Profile. SSH testing is conducted as part of
FCS_SSH_EXT.1 in the [PKG_SSH] module. In any event, because of the fact that
these tests are only performed if the “invoke platform-provided” functionality is
selected, these tests are skipped.

2.2.8 FCS_ENT_EXT.1 Entropy for Virtual Machines

2.2.8.1 TSS

132 The evaluator shall verify that the TSS describes how the TOE provides entropy to
Guest VMs, and how to access the interface to acquire entropy or random numbers.
The evaluator shall verify that the TSS describes the mechanisms for ensuring that
one VM does not affect the entropy acquired by another.

Findings: As per section 6.2.7 of the [ST], the TOE exposes a paravirtualized hardware device
to guest VMs via the host /dev/random device, which itself is fed by a high-speed
hardware noise source. Section 6.2.7 of the [ST] further provides information that the
paravirtualized device is protected by mechanisms described in FDP_HBI_EXT.1 and
that host-only devices are used to feed the /dev/random backend.

2.2.8.2 Tests

133 The evaluator shall perform the following tests:

 Test 1: The evaluator shall invoke entropy from each Guest VM. The
evaluator shall verify that each VM acquires values from the interface.

Note: This test is conducted as part of Test 2 below.

 Test 2: The evaluator shall invoke entropy from multiple VMs as nearly
simultaneously as practicable. The evaluator shall verify that the entropy
used in one VM is not identical to that invoked from the other VMs.

High-Level Test Description

Provision two identical virtual machines in the VS (referred to here as A and B) and start them.

Within VM A, acquire entropy from the host-based entropy source. After a short time, do the same
within VM B. Disable acquisition of entropy samples in VM B, and subsequently in VM A. Perform
a similarity check between the entropy samples acquired between A and B.

The test is considered failed if VM A and B acquire the same entropy. Due to the overlapping nature
of the starting sequence, entropy samples in VM B will be a strict subset of those in VM A under
failure conditions.

Page 30 of 81

High-Level Test Description

Verify that the collected entropy samples form VM B are not found in those from VM A.

PASS

2.2.9 FCS_RBG_EXT.1 Cryptographic Operation (Random Bit
Generation)

134 Documentation shall be produced—and the evaluator shall perform the activities—in
accordance with Appendix E - Entropy Documentation and Assessment.

2.2.9.1 Tests

135 The evaluator shall also perform the following tests, depending on the standard to
which the RBG conforms.

136 The evaluator shall perform 15 trials for the RBG implementation. If the RBG is
configurable, the evaluator shall perform 15 trials for each configuration. The
evaluator shall also confirm that the operational guidance contains appropriate
instructions for configuring the RBG functionality.

137 If the RBG has prediction resistance enabled, each trial consists of (1) instantiate
DRBG, (2) generate the first block of random bits (3) generate a second block of
random bits (4) uninstantiate. The evaluator verifies that the second block of random
bits is the expected value. The evaluator shall generate eight input values for each
trial. The first is a count (0 – 14). The next three are entropy input, nonce, and
personalization string for the instantiate operation. The next two are additional input
and entropy input for the first call to generate. The final two are additional input and
entropy input for the second call to generate. These values are randomly generated.
“generate one block of random bits” means to generate random bits with number of
returned bits equal to the Output Block Length (as defined in NIST SP 800-90A).

138 If the RBG does not have prediction resistance, each trial consists of (1) instantiate
DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second
block of random bits (5) uninstantiate. The evaluator verifies that the second block of
random bits is the expected value. The evaluator shall generate eight input values for
each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and
personalization string for the instantiate operation. The fifth value is additional input
to the first call to generate. The sixth and seventh are additional input and entropy
input to the call to reseed. The final value is additional input to the second generate
call.

139 The following paragraphs contain more information on some of the input values to be
generated/selected by the evaluator.

 Entropy input: the length of the entropy input value must equal the seed
length

 Nonce: If a nonce is supported (CTR_DRBG with no df does not use a
nonce), the nonce bit length is one-half the seed length.

 Personalization string: The length of the personalization string must be <=
seed length. If the implementation only supports one personalization string
length, then the same length can be used for both values. If more than one
string length is supported, the evaluator shall use personalization strings of
two different lengths. If the implementation does not use a personalization
string, no value needs to be supplied.

 Additional input: the additional input bit lengths have the same defaults and
restrictions as the personalization string lengths.

Page 31 of 81

Findings: The Oracle Solaris KCF Hash_DRBG and Oracle OpenSSL 3.0.8 FOM Hash_DRBG
claimed in the ST are included in C1895 (https://csrc.nist.gov/projects/cryptographic-
algorithm-validation-program/details?product=12702) and A4216
(https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program/details?validation=36826), respectively.

2.3 User Data Protection (FDP)

2.3.1 FDP_HBI_EXT.1 Hardware-Based Isolation Mechanisms

2.3.1.1 TSS

140 The evaluator shall ensure that the TSS provides evidence that hardware-based
isolation mechanisms are used to constrain VMs when VMs have direct access to
physical devices, including an explanation of the conditions under which the TSF
invokes these protections.

Findings: In section 6.3.1 of the [ST], the TSS claims that the TOE uses logical domains to
provide access to physical resources. The logical domains are isolated through the
SPARC hardware. This isolation mechanism is summarized at a high-level in
Chapters 1.2 and 1.3 in [SUN4V].

2.3.1.2 Guidance Documentation

141 The evaluator shall verify that the operational guidance contains instructions on how
to ensure that the platform-provided, hardware-based mechanisms are enabled.

Findings: Section 3.4.1 of the [AGD] describes how to ensure the platform-provided, hardware-
based mechanisms are enabled. A reference to [SPARC] is included, which provides
further details on configuring the platform-provided, hardware-based mechanisms.

2.3.2 FDP_PPR_EXT.1 Physical Platform Resource Controls

2.3.2.1 TSS

142 The evaluator shall examine the TSS to determine that it describes the mechanism
by which the VMM controls a Guest VM's access to physical platform resources. This
description shall cover all of the physical platforms allowed in the evaluated
configuration by the ST. It should explain how the VMM distinguishes among Guest
VMs, and how each physical platform resource that is controllable (that is, listed in
the assignment statement in the first element) is identified to an Administrator.

Findings: In section 6.3.1 of the [ST], the TSS claims that the TOE uses logical domains to
provide access to physical resources. The logical domains are isolated through the
SPARC hardware.

 According to section 6.3.2 of the [ST], domains are identified using an ID number and
an alpha-numeric name. When a VM is created or edited by an administrator, the
above devices are either added/configured (allowed) or not added/configured
(denied) to the VM by assigning the PCI end-device to the corresponding PCI bus ID,
and then assigning the bus ID to the domain.

Page 32 of 81

143 The evaluator shall ensure that the TSS describes how the Guest VM is associated
with each physical resource, and how other Guest VMs cannot access a physical
resource without being granted explicit access. For TOEs that implement a robust
interface (other than just "allow access" or "deny access"), the evaluator shall ensure
that the TSS describes the possible operations or modes of access between a Guest
VM's and physical platform resources.

Findings: The [ST] in section 6.3.2 indicates that resources are protected from being shared
between Guest VMs by enforcing PCI bus isolation.

144 If physical resources are listed in the second element, the evaluator shall examine
the TSS and operational guidance to determine that there appears to be no way to
configure those resources for access by a Guest VM. The evaluator shall document
in the evaluation report their analysis of why the controls offered to configure access
to physical resources can't be used to specify access to the resources identified in
the second element (for example, if the interface offers a drop-down list of resources
to assign, and the denied resources are not included on that list, that would be
sufficient justification in the evaluation report).

Findings: According to section 5.3.3 of the [ST], the TOE explicitly denies access to the
Integrated Lights-Out Management (ILOM) function. This is further clarified in section
6.3.2 of the [ST] by indicating that the ILOM cannot be assigned to PCI bus IDs or
directly to domains which prevents VMs from gaining access to it.

2.3.2.2 Guidance Documentation

145 The evaluator shall examine the operational guidance to determine that it describes
how an administrator is able to configure access to physical platform resources for
Guest VMs for each platform allowed in the evaluated configuration according to the
ST. The evaluator shall also determine that the operational guidance identifies those
resources listed in the second and third elements of the component and notes that
access to these resources is explicitly denied/allowed, respectively.

Findings: Section 3.4.1 of the [AGD] describes how to ensure the platform-provided,
hardware-based mechanisms are enabled. The section states access to the ILOM
function by Guest VMs is explicitly denied.

 Furthermore, Section 3.4.1 includes a reference to [SPARC] / Oracle VM Server for
SPARC 3.6 Administration Guide, wherein detailed information about configuring
physical platform resources for Guest VMs can be found starting in Section 4.
Information on PCI bus configuration for Guest VMs can be found in Sections 6-10.

2.3.2.3 Tests

146 Using the operational guidance, the evaluator shall perform the following tests for
each physical platform identified in the ST:

 Test 1: For each physical platform resource identified in the first element, the
evaluator shall configure a Guest VM to have access to that resource and
show that the Guest VM is able to successfully access that resource.

High-Level Test Description

Configure a Guest VM to have access to each of the grantable physical resources. Start the Guest
VM and show that it can access the platform resources.

PASS

Page 33 of 81

 Test 2: For each physical platform resource identified in the first element, the
evaluator shall configure the system such that a Guest VM does not have
access to that resource and show that the Guest VM is unable to successfully
access that resource.

High-Level Test Description

Configure a Guest VM to not have access to each of the grantable physical resources. Start the
Guest VM and show that it cannot access the platform resources.

PASS

 Test 3 [conditional]: For TOEs that have a robust control interface, the
evaluator shall exercise each element of the interface as described in the
TSS and the operational guidance to ensure that the behavior described in
the operational guidance is exhibited.

Note: The TOE does not have a robust control interface.

 Test 4 [conditional]: If the TOE explicitly denies access to certain physical
resources, the evaluator shall attempt to access each listed (in
FDP_PPR_EXT.1.2) physical resource from a Guest VM and observe that
access is denied.

High-Level Test Description

Verify the ILOM physical platform resource is accessible from the Control Domain and is not
accessible from a Guest VM.

PASS

 Test 5 [conditional]: If the TOE explicitly allows access to certain physical
resources, the evaluator shall attempt to access each listed (in
FDP_PPR_EXT.1.3) physical resource from a Guest VM and observe that
the access is allowed. If the operational guidance specifies that access is
allowed simultaneously by more than one Guest VM, the evaluator shall
attempt to access each resource listed from more than one Guest VM and
show that access is allowed.

Note: The TOE does not explicitly allow access to physical platform resources by Guest
VMs.

2.3.3 FDP_RIP_EXT.1 Residual Information in Memory

2.3.3.1 TSS

147 The evaluator shall ensure that the TSS documents the process used for clearing
physical memory prior to allocation to a Guest VM, providing details on when and how
this is performed. Additionally, the evaluator shall ensure that the TSS documents the
conditions under which physical memory is not cleared prior to allocation to a Guest
VM, and describes when and how the memory is cleared.

Findings: In section 6.3.3 of the [ST] the TSS claims that SPARC hardware is responsible for
clearing memory upon allocation.

Page 34 of 81

 There are no conditions where memory clearing is not performed.

2.3.4 FDP_RIP_EXT.2 Residual Information on Disk

2.3.4.1 TSS

148 The evaluator shall ensure that the TSS documents how the TSF ensures that disk
storage is zeroed upon allocation to Guest VMs. Also, the TSS must document any
conditions under which disk storage is not cleared prior to allocation to a Guest VM.
Any file system format and metadata information needed by the evaluator to perform
the below test shall be made available to the evaluator, but need not be published in
the TSS.

Findings: Section 6.3.4 of the [ST] claims that virtual disks are zeroized upon creation. In goes
on to state that shared virtual disks are not cleared prior to allocation. The same
section provides information on metadata found in the V5 disk format.

2.3.4.2 Tests

149 The evaluator shall perform the following test:

 Test 1: On the host, the evaluator creates a file that is more than half the size
of a connected physical storage device (or multiple files whose individual
sizes add up to more than half the size of the storage media). This file (or
files) shall be filled entirely with a nonzero value. Then, the file (or files) shall
be released (freed for use but not cleared). Next, the evaluator (as a VS
Administrator) creates a virtual disk at least that large on the same physical
storage device and connects it to a powered-off VM. Then, from outside the
Guest VM, scan through and check that all the non-metadata (as
documented in the TSS) in the file corresponding to that virtual disk is set to
zero.

High-Level Test Description

Construct a file which takes up more than half of the physically provisioned disk space and fill it
with a non-zero value. Delete the file.

Create a new Guest VM but keep it powered down.

Create a new virtual disk that is at least as large as half the size of the physically provisioned disk
space and assign it to the Guest VM.

Without powering on the Guest VM, scan the newly created virtual disk to determine if the user-
data sections have been appropriately cleared prior to first use.

PASS

2.3.5 FDP_VMS_EXT.1 VM Separation

2.3.5.1 TSS

150 The evaluator shall examine the TSS to verify that it documents all inter-VM
communications mechanisms (as defined above), and explains how the TSF prevents
the transfer of data between VMs outside of the mechanisms listed in
FDP_VMS_EXT.1.1.

Page 35 of 81

Findings: The [ST] claims, in section 6.3.5, that Guest VMs can communicate with one another
via virtual networking. This claim is consistent with the SFR in section 5.3.3 of the
[ST]. The [ST] section 6.3.5 claims the network interface must be explicitly configured
for the VM. An administrator can configure to connect or disconnect VMs from the
network.

2.3.5.2 Guidance

151 The evaluator shall examine the operational guidance to ensure that it documents
how to configure all inter-VM communications mechanisms, including how they are
invoked and how they are disabled.

Findings: Section 3.4.2 of [AGD] describes how to configure all inter-VM communication
mechanisms, namely, though virtual networking. The section includes a reference to
[SPARC] / Oracle VM Server for SPARC 3.6 Administration Guide, with detailed
information on virtual networking found in section 13.

2.3.5.3 Tests

152 The evaluator shall perform the following tests for each documented inter-VM
communications channel:

 Test 1:

a. Create two VMs without specifying any communications mechanism
or overriding the default configuration.

b. Test that the two VMs cannot communicate through the mechanisms
selected in FDP_VMS_EXT.1.1.

c. Create two new VMs, overriding the default configuration to allow
communications through a channel selected in FDP_VMS_EXT.1.1.

d. Test that communications can be passed between the VMs through
the channel.

e. Create two new VMs, the first with the inter-VM communications
channel currently being tested enabled, and the second with the
inter-VM communications channel currently being tested disabled.

f. Test that communications cannot be passed between the VMs
through the channel.

g. As an Administrator, enable inter-VM communications between the
VMs on the second VM.

h. Test that communications can be passed through the inter-VM
channel.

i. As an Administrator again, disable inter-VM communications
between the two VMs.

j. Test that communications can no longer be passed through the
channel.

Page 36 of 81

FDP_VMS_EXT.1.2 is met if communication is unsuccessful in step (b).
FDP_VMS_EXT.1.3 is met if communication is successful in step (d) and
unsuccessful in step (f).

High-Level Test Description

Create two VMs without providing any networking communications between them.

Attempt to invoke the communications channel to transmit data between the Guest VMs and show
this fails.

Enable networking on each of the Guest VMs and then restart them to show that they can
communicate between the shared channel.

On one VM, disable the networking interface. Show that the Guest VMs can no longer
communicate.

Re-enable the networking interface and show that the Guest VMs can communicate once again.

PASS

2.3.6 FDP_VNC_EXT.1 Virtual Networking Components

2.3.6.1 TSS

153 The evaluator shall examine the TSS (or a proprietary annex) to verify that it describes
the mechanism by which virtual network traffic is ensured to be visible only to Guest
VMs configured to be on that virtual network.

Findings: The TSS in section 6.3.6 of the [ST] indicates that an administrator is required to
ensure that guest VMs are configured to be part of the virtual network (i.e. logical
separation enforced by hardware means). Members of the network group can
communicate with one another.

2.3.6.2 Guidance Documentation

154 The evaluator must ensure that the Operational Guidance describes how to create
virtualized networks and connect VMs to each other and to physical networks.

Findings: Section 3.4.2 and 3.4.4 of [AGD] describe how to configure virtual and physical
networking for inter-VM and physical network communications. The sections include
a reference to [SPARC] / Oracle VM Server for SPARC 3.6 Administration Guide,
with detailed information on virtual and physical networking for VMs found in Section
13.

 A reference to [SOLARIS] / Solaris 11.4 Network Administration Cheatsheet is
provided in Section 3.4.4 of [AGD], wherein detailed information on virtual and
physical networking for the Solaris 11.4 OS can be found.

2.3.6.3 Tests

155 Test 1: The evaluator shall assume the role of the Administrator and attempt to
configure a VM to connect to a network component. The evaluator shall verify that
the attempt is successful. The evaluator shall then assume the role of an unprivileged

Page 37 of 81

user and attempt the same connection. If the attempt fails, or there is no way for an
unprivileged user to configure VM network connections, the requirement is met.

High-Level Test Description

As a privileged administrator, log into the control domain and configure a Guest VM to make use of
virtual networking and show that the configuration is accepted.

As an unprivileged user, log into the control domain and attempt to configure a Guest VM to make
use of virtual networking and show that the configuration is not accepted.

PASS

156 Test 2: The evaluator shall assume the role of the Administrator and attempt to
configure a VM to connect to a physical network. The evaluator shall verify that the
attempt is successful. The evaluator shall then assume the role of an unprivileged
user and make the same attempt. If the attempt fails, or there is no way for an
unprivileged user to configure VM network connections, the requirement is met.

High-Level Test Description

As a privileged administrator, log into the control domain and configure a Guest VM to make use of
physical networking and show that the configuration is accepted.

As an unprivileged user, log into the control domain and attempt to configure a Guest VM to make
use of physical networking and show that the configuration is not accepted.

PASS

2.4 Identification and Authentication (FIA)

2.4.1 FIA_AFL_EXT.1 Authentication Failure Handling

2.4.1.1 Tests

157 The evaluator shall perform the following tests for each credential selected in
FIA_AFL_EXT.1.1:

158 The evaluator will set an Administrator-configurable threshold n for failed attempts, or
note the ST-specified assignment.

 Test 1: The evaluator will attempt to authenticate remotely with the credential
n-1 times. The evaluator will then attempt to authenticate using a good
credential and verify that authentication is successful.

Note: This test is covered in Test 2 below.

 Test 2: The evaluator will make n attempts to authenticate using a bad
credential. The evaluator will then attempt to authenticate using a good
credential and verify that the attempt is unsuccessful. Note that the
authentication attempts and lockouts must also be logged as specified in
FAU_GEN.1.

High-Level Test Description

Configure the TOE to permit a certain number of login attempts before locking the user account.
Using a bad credential, attempt to login multiple times to lock the user account. Attempt to login to
the locked user account using a good credential and show that the login attempt fails.

Page 38 of 81

High-Level Test Description

PASS

After reaching the limit for unsuccessful authentication attempts the evaluator will
proceed as follows:

 Test 1: If the Administrator action selection in FIA_AFL_EXT.1.2 is selected,
then the evaluator will confirm by testing that following the operational
guidance and performing each action specified in the ST to re-enable the
remote Administrator’s access results in successful access (when using valid
credentials for that Administrator).

Note: This functionality is covered in the previous test case.

 Test 2: If the time period selection in FIA_AFL_EXT.1.2 is selected, the
evaluator will wait for just less than the time period configured and show that
an authentication attempt using valid credentials does not result in successful
access. The evaluator will then wait until just after the time period configured
and show that an authentication attempt using valid credentials results in
successful access.

Note: This functionality is covered in the previous test case.

2.4.2 FIA_UAU.5 Multiple Authentication Mechanisms

2.4.2.1 Tests

159 If ‘username and password authentication‘ is selected, the evaluator will configure the
VS with a known username and password and conduct the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using the known
username and password. The evaluator will ensure that the authentication
attempt is successful.

Note: The evaluator demonstrated successful authentication with a known username and
password for SSH during the testing for FIA_AFL_EXT.1.

 Test 2: The evaluator will attempt to authenticate to the VS using the known
username but an incorrect password. The evaluator will ensure that the
authentication attempt is unsuccessful.

Note: The evaluator demonstrated unsuccessful authentication with a known username and
incorrect password for SSH during the testing for FIA_AFL_EXT.1.

160 If ‘username and PIN that releases an asymmetric key‘ is selected, the evaluator will
examine the TSS for guidance on supported protected storage and will then configure
the TOE or OE to establish a PIN which enables release of the asymmetric key from
the protected storage (such as a TPM, a hardware token, or isolated execution
environment) with which the VS can interface. The evaluator will then conduct the
following tests:

Page 39 of 81

 Test 1: The evaluator will attempt to authenticate to the VS using the known
user name and PIN. The evaluator will ensure that the authentication attempt
is successful.

 Test 2: The evaluator will attempt to authenticate to the VS using the known
user name but an incorrect PIN. The evaluator will ensure that the
authentication attempt is unsuccessful.

Note: The TOE does not claim username and PIN functionality and therefore these test
cases are not conducted.

161 If ‘X.509 certificate authentication‘ is selected, the evaluator will generate an X.509v3
certificate for an Administrator user with the Client Authentication Enhanced Key
Usage field set. The evaluator will provision the VS for authentication with the
X.509v3 certificate. The evaluator will ensure that the certificates are validated by the
VS as per FIA_X509_EXT.1.1 and then conduct the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using the X.509v3
certificate. The evaluator will ensure that the authentication attempt is
successful.

 Test 2: The evaluator will generate a second certificate identical to the first
except for the public key and any values derived from the public key. The
evaluator will attempt to authenticate to the VS with this certificate. The
evaluator will ensure that the authentication attempt is unsuccessful.

Note: The TOE does not claim X.509 certificate authentication functionality and therefore
these test cases are not conducted.

162 If ‘SSH public-key credential authentication‘ is selected, the evaluator shall generate
a public-private host key pair on the TOE using RSA or ECDSA, and a second public-
private key pair on a remote client. The evaluator shall provision the VS with the client
public key for authentication over SSH, and conduct the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using a message
signed by the client private key that corresponds to provisioned client public
key. The evaluator will ensure that the authentication attempt is successful.

 Test 2: The evaluator will generate a second client key pair and will attempt
to authenticate to the VS with the private key over SSH without first
provisioning the VS to support the new key pair. The evaluator will ensure
that the authentication attempt is unsuccessful.

Note: The above SSH public-key credential test cases are conducted as part of
FCS_SSHS_EXT.1.

2.4.3 FIA_UIA_EXT.1 Administrator Identification and Authentication

2.4.3.1 TSS

163 The evaluator shall examine the TSS to determine that it describes the logon process
for each logon method (local, remote (HTTPS, SSH, etc.)) supported for the product.
This description shall contain information pertaining to the credentials allowed/used,
any protocol transactions that take place, and what constitutes a “successful logon.”
The evaluator shall examine the operational guidance to determine that any
necessary preparatory steps (e.g., establishing credential material such as pre-

Page 40 of 81

shared keys, tunnels, certificates) to logging in are described. For each supported
login method, the evaluator shall ensure the operational guidance provides clear
instructions for successfully logging on. If configuration is necessary to ensure the
services provided before login are limited, the evaluator shall determine that the
operational guidance provides sufficient instruction on limiting the allowed services.

Findings: Section 6.4.4 of the [ST] provides information on the logon process for each login
method as well as describing what constitutes a successful logon.

2.5 Security Management (FMT)

2.5.1 FMT_MOF_EXT.1 Management of Security Functions Behavior

2.5.1.1 TSS

164 The evaluator shall examine the TSS and Operational Guidance to ensure that it
describes which security management functions require Administrator privilege and
the actions associated with each management function. The evaluator shall verify that
for each management function and role specified in the FMT_MOF_EXT.1.1 Server
Virtualization Management Functions Table (Table 3), the defined role is able to
perform all mandatory functions as well as all optional or selection-based functions
claimed in the ST.

Findings: Section 6.5.1 of the [ST] points back to an authoritative table in the SFR in section
5.3.5 of the [ST] indicating which functions are provided to which roles. The evaluator
considered each of the functions defined and found that all mandatory functions and
optional and selection-based functions were properly claimed. Those which were not
claimed are marked with an “N”.

2.5.1.2 Guidance Documentation

165 The evaluator shall examine the Operational Guidance to ensure that it describes
how the Administrator or User are able to perform each management function that
the ST claims the TOE supports.

Findings: The evaluator examined the [AGD], [SPARC] and [SOLARIS] guidance resources and
determined that they describe how the Administrator or User can perform each
claimed management function, as listed in Table 12 of the [ST].

166 The evaluator shall verify for each claimed management function that the Operational
Guidance is sufficiently detailed to allow the function to be performed.

Findings: The evaluator used the [AGD], [SPARC] and [SOLARIS] guidance resources to
exercise each of the claimed management functions and, in doing so, determined that
they were sufficiently detailed to allow the function to be performed by an
Administrator or User.

2.5.1.3 Tests

167 The evaluator shall test each management function for each role listed in the
FMT_MOF_EXT.1.1 Server Virtualization Management Functions Table (Table 3) in
the ST to demonstrate that the function can be performed by the roles that are
authorized to do so and the result of the function is demonstrated. The evaluator shall
also verify for each claimed management function that if the TOE claims not to provide

Page 41 of 81

a particular role with access to the function, then it is not possible to access the TOE
as that role and perform that function.

High-Level Test Description

For each of the claimed management functions which have not been tested in other test cases,
perform the appropriate function as an administrator. Verify the expected result occurs and that the
appropriate audit log entry is generated.

As a non-administrative user, attempt to perform the same function, where applicable. Verify the
expected result occurs and that the appropriate audit log entry is generated.

PASS

2.5.2 FMT_SMO_EXT.1 Separation of Management and Operational
Networks

2.5.2.1 TSS

168 The evaluator shall examine the TSS to verify that it describes how management and
operational traffic is separated.

Findings: Section 6.5.2 of the [ST] indicates that separated networks can be implemented via
virtual and physical networking.

2.5.2.2 Guidance Documentation

169 The evaluator shall examine the operational guidance to verify that it details how to
configure the VS to keep Management and Operational traffic separate.

Findings: Section 3.4.4 of [AGD] describes how to configure the VS to keep Management and
Operational traffic separate. The section includes a reference to the [SPARC] / Oracle
VM Server for SPARC 3.6 Administration Guide and [SOLARIS] / Solaris 11.4
Network Administration Cheatsheet guidance resources, which provide detailed
information on configuration of virtual and physical networks for VMs and the Solaris
11.4 OS.

2.5.2.3 Tests

170 The evaluator shall configure the TOE as documented in the guidance. If separation
is logical, then the evaluator shall capture packets on the management network. If
plaintext Guest network traffic is detected, the requirement is not met.

171 If separation uses trusted channels, then the evaluator shall capture packets on the
network over which traffic is tunneled. If plaintext Guest network traffic is detected,
the requirement is not met.

172 If data encryption is used, then the evaluator shall capture packets on the network
over which the data is sent while a VM or other large data structure is being
transmitted. If plaintext VM contents are detected, the requirement is not met.

High-Level Test Description

Capture traffic on the Management Network interface and generate traffic to and from the
management components. At the same time, generate traffic between Guest VMs on the Guest
Network and traffic between Guest VMs and an external physical device on the Guest Network.
Verify Guest VM traffic does not appear on the Management Network.

Page 42 of 81

High-Level Test Description

PASS

2.6 Protection of the TSF (FPT)

2.6.1 FPT_DVD_EXT.1 Non-Existence of Disconnected Virtual Devices

2.6.1.1 Tests

173 The evaluator shall connect a device to a VM, then from within the guest scan the
VM's devices to ensure that the connected device is present--using a device driver or
other available means to scan the VM's I/O ports or PCI Bus interfaces. (The device's
interface should be documented in the TSS under FPT_VDP_EXT.1.) The evaluator
shall remove the device from the VM and run the scan again. This requirement is met
if the device's interfaces are no longer present.

High-Level Test Description

Configure a Guest VM to have access to at least one of the devices claimed in FPT_VDP_EXT.1
and show that the device is accessible. Then reconfigure the Guest VM to remove the device and
show that the Guest VM is no longer able to access it.

PASS

2.6.2 FPT_EEM_EXT.1 Execution Environment Mitigations

2.6.2.1 TSS

174 The evaluator shall examine the TSS to ensure that it states, for each platform listed
in the ST, the execution environment-based vulnerability mitigation mechanisms used
by the TOE on that platform. The evaluator shall ensure that the lists correspond to
what is specified in FPT_EEM_EXT.1.1.

Findings: In section 6.6.2 of the [ST], the document describes that for the management and
configuration components of the TOE which operate on the Solaris trusted control
domain, the Solaris OS includes address space layout randomization (ASLR),
memory execution protection, and stack and heap overflow protection to protect
running components. As guest virtual machines operate independently of the Solaris
control domain, guest VMs are isolated using mechanisms implemented by the
SPARC hardware.

2.6.3 FPT_HAS_EXT.1 Hardware Assists

2.6.3.1 TSS

175 The evaluator shall examine the TSS to ensure that it states, for each platform listed
in the ST, the hardware assists and memory-handling extensions used by the TOE
on that platform. The evaluator shall ensure that these lists correspond to what is
specified in the applicable FPT_HAS_EXT component.

Findings: Section 6.6.3 of the [ST] indicates that no binary translations or shadow page tables
are required.

Page 43 of 81

2.6.4 FPT_HCL_EXT.1 Hypercall Controls

2.6.4.1 TSS

176 The evaluator shall examine the TSS (or proprietary TSS Annex) to ensure that all
hypercall functions are documented at the level necessary for the evaluator to run the
below test. Documentation for each hypercall interface must include: how to invoke
the interface, parameters and legal values, and any conditions under which the
interface can be invoked (e.g., from guest user mode, guest privileged mode, during
guest boot only).

Findings: Section 6.6.4 of the [ST] states, “Hypercalls are enabled by default and cannot be
disabled.” Furthermore, the section provides a reference to the [SUNV4] external
public resource, which documents the hypercall functions of the TOE. The section
indicates a summary of all hypercalls can be found in section A.5 of [SUNV4] and
detailed descriptions for each can be found in chapters 11-27 and 31.

 [SUNV4] provides significant information on the hypercall interface, methods of
invocation, parameters and legal value (ranges or conditions) and whether the
hypercall can be executed by guest VMs or from supervisory VMs. For example, in
chapter 25 (Cryptographic Services), section 25.1 is information pertinent to trusted
domains and section 25.2 is pertinent to untrusted domains (e.g. Guest VMs).

2.6.4.2 Guidance Documentation

177 There is no operational guidance for this component.

2.6.4.3 Tests

178 The evaluator shall perform the following test:

179 For each hypercall interface documented in the TSS or proprietary TSS Annex, the
evaluator shall attempt to invoke the function from within the VM using an invalid
parameter (if any). If the VMM or VS crashes or generates an exception, or if no error
is returned to the guest, then the test fails. If an error is returned to the guest, then
the test succeeds.

High-Level Test Description

Using a test harness within a Guest VM, attempt to call out to the hypercall interface with an invalid
parameter and show that the hypercall returns an error back to the Guest VM.

PASS

2.6.5 FPT_RDM_EXT.1 Removable Devices and Media

2.6.5.1 TSS

180 The evaluator shall examine the TSS to ensure it describes the association between
the media or devices supported by the TOE and the actions that can occur when
switching information domains.

Page 44 of 81

Findings: Section 6.6.5 of the [ST] indicates that removable media must be associated by
means of explicit configuration. Since the removable device is on a specific PCI bus;
and since the PCI bus must be assigned explicitly to a VM by an administrator at VM
configuration time, there are no instances where a removable device (and therefore
removable media) can be transferred to another information domain without explicit
reconfiguration by the administrator to reassign the PCI buses.

2.6.5.2 Guidance Documentation

181 The evaluator shall examine the operational guidance to ensure it documents how an
administrator or user configures the behavior of each media or device.

Findings: Sections 6, 7, 8, 9, 10, 11 and 13 under the [SPARC] / Oracle VM Server for
SPARC 3.6 Administration Guide guidance resource provides detailed information
on how an administrator or user can configure the behaviour of each media or
device.

2.6.5.3 Tests

182 The evaluator shall perform the following test for each listed media or device:

 Test 1: The evaluator shall configure two VMs that are members of different
information domains, with the media or device connected to one of the VMs.
The evaluator shall disconnect the media or device from the VM and connect
it to the other VM. The evaluator shall verify that the action performed is
consistent with the action assigned in the TSS.

High-Level Test Description

Configure a Guest VM without any explicit PCI device assignment and another Guest VM with an
explicit PCI device assignment. Show that the PCI device can only be accessed by the Guest VM
to which the device was assigned.

Reassign the PCI device to the other Guest VM. Show that the PCI device can only be accessed
by the Guest VM to which the device was assigned.

Connect a removable device to a VM via an assigned PCI device. Show that the removable device
is accessible only from the VM to which the PCI device is assigned.

PASS

2.6.6 FPT_TUD_EXT.1 Trusted Updates to the Virtualization System

2.6.6.1 TSS

183 The evaluator shall verify that the TSS describes all TSF software update
mechanisms for updating the system software. Updates to the TOE either have a
hash associated with them, or are signed by an authorized source. The evaluator
shall verify that the description includes either a digital signature or published hash
verification of the software before installation and that installation fails if the
verification fails. The evaluator shall verify that the TSS describes the method by
which the digital signature or published hash is verified to include how the candidate
updates are obtained, the processing associated with verifying the update, and the
actions that take place for both successful and unsuccessful verification. If digital

Page 45 of 81

signatures are used, the evaluator shall also ensure the definition of an authorized
source is contained in the TSS.

Findings: According to section 6.6.6 of the [ST] the TOE leverages 2048-bit RSA digital
signature mechanism for verification of packages, which is included within a
package’s metadata. Packages are signed by Oracle-issued private keys and the
corresponding trusted public keys are stored on the TOE within X.509 certificates
under /etc/certs/CA.

 The TSS claims that the digital signature is checked prior to package installation.
Failures in digital signatures prevent the package from being installed; successful
digital signature checks allow the package to be installed.

 Packages are provided by the Image Packaging System (IPS) which are stored in
repositories which are populated by IPS publishers. The default primary IPS publisher
is for Solaris and is published at https://pkg.oracle.com/solaris/release/. However,
end-users often implement their own IPS repository within their own network which
can include packages copied from the official Oracle repositories.

184 If the ST author indicates that a certificate-based mechanism is used for software
update digital signature verification, the evaluator shall verify that the TSS contains a
description of how the certificates are contained on the device. The evaluator also
ensures that the TSS (or administrator guidance) describes how the certificates are
installed/updated/selected, if necessary.

Findings: The [ST] does not indicate that a certificate-based mechanism is used for digital
signature verification of software updates. However, according to section 6.6.6 of the
[ST], X.509 certificates are used as a means of storing trusted public keys used to
verify the digital signatures.

2.6.6.2 Tests

185 The evaluator shall perform the following tests:

 Test 1: The evaluator performs the version verification activity to determine the
current version of the product. The evaluator obtains a legitimate update using
procedures described in the operational guidance and verifies that it is
successfully installed on the TOE. After the update, the evaluator performs the
version verification activity again to verify the version correctly corresponds to
that of the update.

High-Level Test Description

Using a network-based package repository, query for updates, install a package and verify that the
package was installed.

PASS

 Test 2: The evaluator performs the version verification activity to determine the
current version of the product. The evaluator obtains or produces illegitimate
updates as defined below, and attempts to install them on the TOE. The evaluator
verifies that the TOE rejects all of the illegitimate updates. The evaluator performs
this test using all of the following forms of illegitimate updates:

1) A modified version (e.g., using a hex editor) of a legitimately signed
or hashed update

Page 46 of 81

2) An image that has not been signed/hashed

3) An image signed with an invalid hash or invalid signature (e.g., by
using a different key as expected for creating the signature or by
manual modification of a legitimate hash/signature)

High-Level Test Description

Using a package in the IPS manager, modify the binary to fail the signature verification activity.
Attempt to install the binary and show it fails.

Using a package in the IPS manager, remove the signature from the package. Attempt to install the
binary and show it fails.

Finally, attempt the install operation again with a known-good package and signature and show that
the installation succeeds.

PASS

2.6.7 FPT_VDP_EXT.1 Virtual Device Parameters

2.6.7.1 TSS

186 The evaluator shall examine the TSS to ensure it lists all virtual devices accessible
by the guest OS. The TSS, or a separate proprietary document, must also document
all virtual device interfaces at the level of I/O ports or PCI Bus interfaces - including
port numbers (absolute or relative to a base), port name, address range, and a
description of legal input values.

Findings: Section 6.6.7 of the [ST] indicates that a small number of virtualized devices are
provided to guest VMs. These include virtual disks, virtual networking, and virtual
SCSI host-bus adaptors (HBA). Proprietary documentation in [VIOP] provided the
specifics of the interface protocol and was found to contain the necessary
information regarding how guest VMs call into virtualized devices.

 Rather than being specified using “ports” or “PCI bus interfaces”, virtual devices in
SPARC are implemented using specific LDC hypercalls as described in section 1.5
and 1.7 of [SUN4V]. These hypercalls form the fundamental virtual channels
through which physical devices or abstracted services communicate with the guest
domains.

 The SPARC Virtual I/O (VIO) protocol is a mechanism for implementing virtual I/O
devices in a SPARC server. It allows virtual devices, such as network interfaces or
disk controllers, to be created and assigned to guest domains. The VIO protocol
provides a layer of abstraction between the guest domains and the physical I/O
devices, allowing for greater flexibility in managing and sharing hardware resources.

 The hypervisor specification in [SUN4V] and the protocol described in the [VIOP]
document are at a granularity that would allow a reader to implement a virtual
device driver connected to a physical device or abstracted virtual service running in
another domain.

187 The TSS must also describe the expected behavior of the interface when presented
with illegal input values. This behavior must be deterministic and indicative of
parameter checking by the TSF.

Findings: As per section 6.6.7 of the [ST], illegal parameters are rejected.

Page 47 of 81

188 The evaluator must ensure that there are no obvious or publicly known virtual I/O
ports missing from the TSS.

Findings: Section 6.6.7 of the [ST] does not appear to omit any obvious or publicly known I/O
ports. The fundamental mechanism of access to virtual devices (as described in
[VIOP]) is actually via logical domain channels (LDCs) using hypercalls. The
hypercalls specification in [SUN4V] provides a complete input and output
specification.

189 There is no expectation that evaluators will examine source code to verify the “all”
part of the evaluation activity.

2.6.7.2 Tests

190 For each virtual device interface, the evaluator shall attempt to access the interface
using at least one parameter value that is out of range or illegal. The test is passed if
the interface behaves in the manner documented in the TSS. Interfaces that do not
have input parameters need not be tested. This test can be performed in conjunction
with the tests for FPT_DVD_EXT.1.

Note: Virtual device interfaces are established entirely by LDC hypercalls described in
section 22 of [SUN4V]. The hypercalls are LDC_TX_QCONF (0xe0),
LDC_TX_QINFO (0xe5), LDC_TX_GETSTATE (0xe2), LDC_TX_SET_QTAIL
(0xe3), LDC_RX_QCONF (0xe4), LDC_RX_QINFO (0xe5), LDC_RX_GET_STATE
(0xe6), LDC_RX_SET_QHEAD (0xe7), LDC_SET_MAP_TABLE (0xea),
LDC_GET_MAP_TABLE (0xeb), LDC_COPY (0xec), LDC_MAPIN (0xed),
LDC_UNMAP (0xee), and LDC_REVOKE (0xef).

 Test cases in FPT_HCL_EXT.1 exercise the LDC hypervisor calls with invalid data
that return exit codes back to the guest, consistent with [SUN4V]. Therefore,
FPT_HCL_EXT.1 exercises each of the necessary virtual device interfaces necessary
to meet this test case.

2.6.8 FPT_VIV_EXT.1 VMM Isolation from VMs

2.6.8.1 TSS

191 The evaluator shall verify that the TSS (or a proprietary annex to the TSS) describes
how the TSF ensures that guest software cannot degrade or disrupt the functioning
of other VMs, the VMM or the platform. And how the TSF prevents guests from
invoking higher-privilege platform code, such as the examples in the note.

Findings: Section 6.6.8 of the [ST] claims that the TSF prevents guest VMs from degrading or
disrupting the functioning of other VMs by virtue of segregating low-level resource
access and provisioning functions to either the ILOM or the control domain. The ILOM
is a separate part of the system with its own CPU and memory, inside the physical
chassis, running its own embedded OS. Only the control domain has the ability to
reconfigure platform resources (CPU, memory, PCI).

Page 48 of 81

2.7 TOE Access (FTA)

2.7.1 FTA_TAB.1 TOE Access Banner

2.7.1.1 Tests

192 The evaluator shall configure the TOE to display the advisory warning message
“TEST TEST Warning Message TEST TEST”. The evaluator shall then log out and
confirm that the advisory message is displayed before login can occur.

High-Level Test Description

As an authorized administrator, change the banner as directed and ensure that subsequent logins
are presented with this banner before a successful session is established.

PASS

2.8 Trusted path/channels (FTP)

2.8.1 FTP_ITC_EXT.1 Trusted Channel Communications

2.8.1.1 TSS

193 The evaluator will review the TSS to determine that it lists all trusted channels the
TOE uses for remote communications, including both the external entities and remote
users used for the channel as well as the protocol that is used for each.

Findings: The TSS in section 6.8.1 of the [ST] lists the trusted channels that the TOE uses for
remote communications. These are consistent with the selections in FTP_ITC_EXT.1
in section 5.3.8 of the [ST].

 The TSS indicates that TLS is used for syslog and SSH is used for the CLI
(administrative access).

2.8.1.2 Tests

194 The evaluator will configure the TOE to communicate with each external IT entity and
type of remote user identified in the TSS. The evaluator will monitor network traffic
while the VS performs communication with each of these destinations. The evaluator
will ensure that for each session a trusted channel was established in conformance
with the protocols identified in the selection.

High-Level Test Description

Capture traffic on the management network of the TOE and login via SSH, thereby generating traffic
on each trusted channel (SSH, Rsyslog).

Verify the traffic does not contain any plaintext packets between the remote endpoints using those
claimed channels and that the network traces correspond to the protocols identified in the claims.

PASS

Page 49 of 81

2.8.2 FTP_UIF_EXT.1 User Interface: I/O Focus

2.8.2.1 TSS

195 The evaluator shall ensure that the TSS lists the supported user input devices.

Findings: Section 6.8.3 of the [ST] states that the TOE supports keyboard devices over the SSH
CLI.

2.8.2.2 Guidance Documentation

196 The evaluator shall ensure that the operational guidance specifies how the current
input focus is indicated to the user.

Findings: Section 3.4.3 of [AGD] specifies how the current input focus is indicated to the user.

2.8.2.3 Tests

197 For each supported input device, the evaluator shall demonstrate that the input from
each device listed in the TSS is directed to the VM that is indicated to have the input
focus.

High-Level Test Description

Create two guest domains, vm01 and vm02. Attempt to access the local console for vm01. Show
that the UI unambiguously indicates which logical domain is being accessed.

PASS

2.8.3 FTP_UIF_EXT.2 User Interface: Identification of VM

2.8.3.1 TSS

198 The evaluator shall ensure that the TSS describes the mechanism for identifying VMs
to the user, how identities are assigned to VMs, and how conflicts are prevented.

Findings: In section 6.8.4 of the [ST], VMs are given unique names at provisioning time and any
attempt to duplicate a VM is prevented by the administrative CLI toolset.

2.8.3.2 Tests

199 The evaluator shall perform the following test:

200 The evaluator shall attempt to create and start at least three Guest VMs on a single
display device where the evaluator attempts to assign two of the VMs the same
identifier. If the user interface displays different identifiers for each VM, then the
requirement is met. Likewise, the requirement is met if the system refuses to create
or start a VM when there is already a VM with the same identifier.

Page 50 of 81

High-Level Test Description

Attempt to create a VM with the same name as a VM from the previous test case. Show that the
VM cannot be created.

Attempt to rename a VM to have the same name as a VM from the previous test case. Show that
the VM cannot be renamed.

PASS

Page 51 of 81

3 Evaluation Activities for Optional
Requirements

201 No optional requirements have been selected by this evaluation.

Page 52 of 81

4 Evaluation Activities for Selection-Based
Requirements

4.1.1 FCS_TLS_EXT.1 TLS Protocol

4.1.1.1 Guidance Documentation

202 The evaluator shall ensure that the selections indicated in the ST are consistent with
selections in the dependent components.

Findings: The evaluator reviewed the selection under FCS_TLS_EXT.1 of section 5.3.2 of the
[ST] and confirmed it was consistent with those made under FTP_ITC_EXT.1 of
section 5.3.8 of the [ST] and the guidance given in sections 3.2.4.6 and 4 of the [AGD].

4.1.2 FCS_TLSC_EXT.1 TLS Client Protocol

4.1.2.1 FCS_TLSC_EXT.1.1 TSS

203 The evaluator shall check the description of the implementation of this protocol in the
TSS to ensure that the cipher suites supported are specified. The evaluator shall
check the TSS to ensure that the cipher suites specified include those listed for this
component.

Findings: Section 6.2.9 of the [ST] provides the list of TLS ciphersuites the TOE is restricted in
accepting. This list is equivalent to the ciphersuites provided in section 5.3.2 of the
[ST].

4.1.2.2 FCS_TLSC_EXT.1.1 Guidance Documentation

204 The evaluator shall also check the operational guidance to ensure that it contains
instructions on configuring the product so that TLS conforms to the description in the
TSS.

Findings: The evaluator reviewed the TLS client description given in section 6.2.9 of the [ST]
and confirmed it was consistent with the TLS client configuration given in section 4.2
of the [AGD].

4.1.2.3 FCS_TLSC_EXT.1.1 Tests

205 The evaluator shall also perform the following tests:

 Test 1: The evaluator shall establish a TLS connection using each of the
cipher suites specified by the requirement. This connection may be
established as part of the establishment of a higher-level protocol, e.g., as
part of an EAP session. It is sufficient to observe the successful negotiation
of a cipher suite to satisfy the intent of the test; it is not necessary to examine
the characteristics of the encrypted traffic in an attempt to discern the cipher
suite being used (for example, that the cryptographic algorithm is 128-bit AES
and not 256-bit AES).

Page 53 of 81

High-Level Test Description

Configure a TLS server in the TOE environment to offer a single supported ciphersuite. Restart the
rsyslog client on the TOE and verify a successful TLS connection to the test server is made using
that ciphersuite. Repeat the test for all claimed ciphersuites.

PASS

 Test 2: The goal of the following test is to verify that the TOE accepts only
certificates with appropriate values in the extendedKeyUsage extension, and
implicitly that the TOE correctly parses the extendedKeyUsage extension as
part of X.509v3 server certificate validation.

The evaluator shall attempt to establish the connection using a server with a
server certificate that contains the Server Authentication purpose in the
extendedKeyUsage extension and verify that a connection is established.
The evaluator shall repeat this test using a different, but otherwise valid and
trusted, certificate that lacks the Server Authentication purpose in the
extendedKeyUsage extension and ensure that a connection is not
established. Ideally, the two certificates should be similar in structure, the
types of identifiers used, and the chain of trust.

High-Level Test Description

Construct two X.509 certificates, one missing the serverAuth permission in the extendedKeyUsage
extension and another missing the extendedKeyUsage extension altogether. In turn, serve each
certificate to the TOE from a test server. Verify the TOE rejects the invalid certificate in each case
and fails to establish the connection. Show that the TOE audits the reason for the failure.

PASS

 Test 3: The evaluator shall send a server certificate in the TLS connection
that does not match the server-selected cipher suite (for example, send a
ECDSA certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA
cipher suite or send a RSA certificate while using one of the ECDSA cipher
suites.) The evaluator shall verify that the product disconnects after receiving
the server’s Certificate handshake message.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

 Test 4: The evaluator shall configure the server to select the
TLS_NULL_WITH_NULL_NULL cipher suite and verify that the client denies
the connection.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

 Test 5: The evaluator shall perform the following modifications to the traffic:

Page 54 of 81

o Test 5.1: Change the TLS version selected by the server in the
Server Hello to an undefined TLS version (for example 1.5
represented by the two bytes 03 06) and verify that the client rejects
the connection.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.2: Change the TLS version selected by the server in the
Server Hello to the most recent unsupported TLS version (for
example 1.1 represented by the two bytes 03 02) and verify that the
client rejects the connection.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.3: [conditional] If DHE or ECDHE cipher suites are supported,
modify at least one byte in the server’s nonce in the Server Hello
handshake message, and verify that the client does not complete the
handshake and no application data flows.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.4: Modify the server’s selected cipher suite in the Server Hello
handshake message to be a cipher suite not presented in the Client
Hello handshake message. The evaluator shall verify that the client
does not complete the handshake and no application data flows.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.5: [conditional] If DHE or ECDHE cipher suites are supported,
modify the signature block in the server’s Key Exchange handshake
message, and verify that the client does not complete the handshake
and no application data flows. This test does not apply to cipher
suites using RSA key exchange. If a TOE only supports RSA key
exchange in conjunction with TLS, then this test shall be omitted.

Page 55 of 81

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.6: Modify a byte in the Server Finished handshake message,
and verify that the client does not complete the handshake and no
application data flows.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

o Test 5.7: Send a message consisting of random bytes from the
server after the server has issued the Change Cipher Spec message
and verify that the client does not complete the handshake and no
application data flows. The message must still have a valid 5-byte
record header in order to ensure the message will be parsed as TLS.

High-Level Test Description

Using a custom tool, perform the test as directed. Show that the TOE fails to negotiate a TLS
handshake.

PASS

4.1.2.4 FCS_TLSC_EXT.1.2 TSS

206 The evaluator shall ensure that the TSS describes the client’s method of establishing
all reference identifiers from the application-configured reference identifier, including
which types of reference identifiers are supported (e.g. Common Name, DNS Name,
URI Name, Service Name, or other application-specific Subject Alternative Names)
and whether IP addresses and wildcards are supported. The evaluator shall ensure
that this description identifies whether and the manner in which certificate pinning is
supported or used by the product.

Findings: Section 6.2.9 of the [ST] states that the TOE will compare application-configured
reference identifiers to compare with those found in X.509 certificates. The TSS
states that Subject Alternative Name DNS names and IP addresses are supported in
the evaluated configuration. Wildcards are supported and certificate pinning is not
supported.

4.1.2.5 FCS_TLSC_EXT.1.2 Guidance Documentation

207 The evaluator shall verify that the AGD guidance includes instructions for setting the
reference identifier to be used for the purposes of certificate validation in TLS.

Page 56 of 81

Findings: The evaluator reviewed the TLS client configuration given in section 4.2 of the [AGD]
and verified instructions for setting the TLS server reference identifier were included.
Specifically, the section states that the reference identifier can be configured through
the “StreamDriverPermittedPeers” option in the rsyslog configuration file.

4.1.2.6 FCS_TLSC_EXT.1.2 Tests

208 [TD0499] The evaluator shall configure the reference identifier according to the AGD
guidance and perform the following tests during a TLS connection. If the TOE
supports certificate pinning, all pinned certificates must be removed before
performing Tests 1 through 6. A pinned certificate must be added prior to performing
Test 7.

 Test 1: The evaluator shall present a server certificate that contains a CN
that does not match the reference identifier and does not contain the SAN
extension. The evaluator shall verify that the connection fails.

Note that some systems might require the presence of the SAN extension. In
this case the connection would still fail but for the reason of the missing SAN
extension instead of the mismatch of CN and reference identifier. Both
reasons are acceptable to pass Test 1.

High-Level Test Description

Create an X.509 certificate which meets the test requirements and deliver it to the TOE from a test
TLS server. Show that the connection fails to be established and no application data flows from the
TOE client to the test server. Show that the appropriate audit message is received.

PASS

 Test 2: The evaluator shall present a server certificate that contains a CN
that matches the reference identifier, contains the SAN extension, but does
not contain an identifier in the SAN that matches the reference identifier. The
evaluator shall verify that the connection fails. The evaluator shall repeat this
test for each supported SAN type.

High-Level Test Description

Create an X.509 certificate which meets the test requirements and deliver it to the TOE from a test
TLS server. Show that the connection fails to be established and no application data flows from the
TOE client to the test server. Show that the appropriate audit message is received.

PASS

 Test 3: [conditional] If the TOE does not mandate the presence of the SAN
extension, the evaluator shall present a server certificate that contains a CN
that matches the reference identifier and does not contain the SAN extension.
The evaluator shall verify that the connection succeeds. If the TOE does
mandate the presence of the SAN extension, this Test shall be omitted.

High-Level Test Description

Create an X.509 certificate which meets the test requirements and deliver it to the TOE from a test
TLS server. Show that the connection succeeds and application data flows from the TOE client to
the test server.

Page 57 of 81

High-Level Test Description

PASS

 Test 4: The evaluator shall present a server certificate that contains a CN
that does not match the reference identifier but does contain an identifier in
the SAN that matches. The evaluator shall verify that the connection
succeeds.

High-Level Test Description

Create an X.509 certificate which meets the test requirements and deliver it to the TOE from a test
TLS server. Show that the connection succeeds and application data flows from the TOE client to
the test server.

PASS

 Test 5: The evaluator shall perform the following wildcard tests with each
supported type of reference identifier. The support for wildcards is intended
to be optional. If wildcards are supported, the first, second, and third tests
below shall be executed. If wildcards are not supported, then the fourth test
below shall be executed.

o Test 5.1: [conditional]: If wildcards are supported, the evaluator shall
present a server certificate containing a wildcard that is not in the left-
most label of the presented identifier (e.g. foo.*.example.com) and
verify that the connection fails.

High-Level Test Description

Create an X.509 certificate which meets the test requirements and deliver it to the TOE from a test
TLS server. Modify the TOE reference identifier to be “foo.bar.example.com”. Show that the
connection fails to be established and no application data flows from the TOE client to the test
server. Show that the appropriate audit message is received.

Repeat for both the CN and a DNS SAN type.

PASS

o Test 5.2: [conditional]: If wildcards are supported, the evaluator shall
present a server certificate containing a wildcard in the left-most label
but not preceding the public suffix (e.g. *.example.com). The
evaluator shall configure the reference identifier with a single left-
most label (e.g. foo.example.com) and verify that the connection
succeeds. The evaluator shall configure the reference identifier
without a left-most label as in the certificate (e.g. example.com) and
verify that the connection fails. The evaluator shall configure the
reference identifier with two left-most labels (e.g.
bar.foo.example.come) and verify that the connection fails.

High-Level Test Description

Modify the TOE reference identifier to be “foo.example.com”. Deliver an X.509 certificate that meets
the requirements from a test TLS server to the TOE. Show that the connection succeeds and
application data flows from the TOE client to the test server.

Page 58 of 81

High-Level Test Description

Modify the TOE reference identifier to be the apex name of “example.com”. Show that the
connection fails and no application data flows from TOE client to the test server. Show that the
appropriate audit message is received.

Modify the TOE reference identifier to be “foo.bar.example.com”. Show that the connection fails
and no application data flows from TOE client to the test server. Show that the appropriate audit
message is received.

Repeat for both the CN and a DNS SAN type.

PASS

o Test 5.3: [conditional]: If wildcards are supported, the evaluator shall
present a server certificate containing a wildcard in the left-most label
immediately preceding the public suffix (e.g. *.com). The evaluator
shall configure the reference identifier with a single left-most label
(e.g. foo.com) and verify that the connection fails. The evaluator shall
configure the reference identifier with two left-most labels (e.g.
bar.foo.com) and verify that the connection fails.

High-Level Test Description

Modify the TOE’s reference identifier to be “foo.com” and deliver the certificate described by the
test from a test TLS server to the TOE. Show that the connection fails and application data does
not flow from the TOE client to the test server.

Modify the TOE’s reference identifier to be “bar.foo.com” and deliver the certificate described by
the test from a test TLS server to the TOE. Show that the connection fails and application data does
not flow from the TOE client to the test server.

Repeat for both the CN and a DNS SAN type.

Show that the appropriate audit messages are received in each case.

PASS

o Test 5.4: [conditional]: If wildcards are not supported, the evaluator
shall present a server certificate containing a wildcard in the left-most
label (e.g. *.example.com). The evaluator shall configure the
reference identifier with a single left-most label (e.g.
foo.example.com) and verify that the connection fails.

Note: The TOE supports wildcards and therefore this test does not apply.

 Test 6: [conditional] If URI or Service name reference identifiers are
supported, the evaluator shall configure the DNS name and the service
identifier. The evaluator shall present a server certificate containing the
correct DNS name and service identifier in the URIName or SRVName fields
of the SAN and verify that the connection succeeds. The evaluator shall
repeat this test with the wrong service identifier (but correct DNS name) and
verify that the connection fails.

Note: The TOE does not support URI or SrvName reference identifiers and therefore this
test does not apply.

 Test 7: [conditional] If pinned certificates are supported the evaluator shall
present a certificate that does not match the pinned certificate and verify that
the connection fails.

Page 59 of 81

Note: The TOE does not support pinned certificates and therefore this test does not apply.

4.1.2.7 FCS_TLSC_EXT.1.3 TSS

209 If the selection for authorizing override of invalid certificates is made, then the
evaluator shall ensure that the TSS includes a description of how and when user or
administrator authorization is obtained. The evaluator shall also ensure that the TSS
describes any mechanism for storing such authorizations, such that future
presentation of such otherwise-invalid certificates permits establishment of a trusted
channel without user or administrator action.

Findings: Section 5.3.2 of the [ST] indicates that the TOE does not support any override
mechanisms in the evaluated configuration.

4.1.2.8 FCS_TLSC_EXT.1.3 Tests

210 The evaluator shall demonstrate that using an invalid certificate (unless excepted)
results in the function failing as follows, unless excepted:

 [TD0513] Test 1a: The evaluator shall demonstrate that a server using a
certificate with a valid certification path successfully connects.

 [TD0513] Test 1b: The evaluator shall modify the certificate chain used by
the server in test 1a to be invalid and demonstrate that a server using a
certificate without a valid certification path to a trust store element of the TOE
results in an authentication failure.

Note: Test 1a and 1b are conducted as part of FIA_X509_EXT.2 Test 1.

 [TD0513] Test 1c [conditional]: If the TOE trust store can be managed, the
evaluator shall modify the trust store element used in Test 1a to be untrusted
and demonstrate that a connection attempt from the same server used in
Test 1a results in an authentication failure.

Note: Test 1c is conducted as part of FIA_X509_EXT.2 Test 1.

 Test 2: The evaluator shall demonstrate that a server using a certificate
which has been revoked results in an authentication failure.

Note: Test 2 is conducted as part of FIA_X509_EXT.1 Test 3.

 Test 3: The evaluator shall demonstrate that a server using a certificate
which has passed its expiration date results in an authentication failure.

Note: Test 3 is conducted as part of FIA_X509_EXT.1 Test 2.

 Test 4: The evaluator shall demonstrate that a server using a certificate
which does not have a valid identifier results in an authentication failure.

Note: Test 4 is conducted as part of FCS_TLSC_EXT.1.2 test cases.

Page 60 of 81

4.1.3 FCS_SSH_EXT.1 SSH Protocol

4.1.3.1 FCS_SSH_EXT.1.1 TSS

211 The evaluator shall ensure that the selections indicated in the ST are consistent with
selections in this and subsequent components. Otherwise, this SFR is evaluated by
activities for other SFRs.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has been found to
be consistent with the selections made in section 5.3.2 of the [ST].

4.1.3.2 FCS_SSH_EXT.1.1 Guidance

212 There are no guidance evaluation activities for this component. This SFR is evaluated
by activities for other SFRs.

4.1.3.3 FCS_SSH_EXT.1.1 Tests

213 There are no test evaluation activities for this component. This SFR is evaluated by
activities for other SFRs.

4.1.3.4 FCS_SSH_EXT.1.2 TSS

214 The evaluator shall check to ensure that the authentication methods listed in the TSS
are identical to those listed in this SFR component; and, ensure if password-based
authentication methods have been selected in the ST then these are also described;
and, ensure that if keyboard-interactive is selected, it describes the multifactor
authentication mechanisms provided by the TOE.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has been found to
be consistent with the selections made in section 5.3.2 of the [ST]. Password-based
authentication is selected in section 5.3.2 and is described in section 6.2.10.

4.1.3.5 FCS_SSH_EXT.1.2 Guidance

215 The evaluator shall check the guidance documentation to ensure the configuration
options, if any, for authentication mechanisms provided by the TOE are described.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH authentication
mechanisms provided by the TOE. The section includes a reference to the SSHD
section of the [SOLARIS] guidance resource which provides detailed information on
configuration of the SSHD service.

4.1.3.6 FCS_SSH_EXT.1.2 Tests

216 Test 1: [conditional] If the TOE is acting as SSH Server:

a. The evaluator shall use a suitable SSH Client to connect to the TOE,
enable debug messages in the SSH Client, and examine the debug
messages to determine that only the configured authentication methods
for the TOE were offered by the server.

Page 61 of 81

High-Level Test Description

Using OpenSSH’s SSH client, connect to the TOE to show the advertised authentication methods
of the TOE SSH server. Verify only the configured authentication methods for the TOE were offered
by the server.

PASS

b. [conditional] If the SSH server supports X509 based Client authentication
options:

a. The evaluator shall initiate an SSH session from a client where
the username is associated with the X509 certificate. The
evaluator shall verify the session is successfully established.

b. Next the evaluator shall use the same X509 certificate as above
but include a username not associated with the certificate. The
evaluator shall verify that the session does not establish.

c. Finally, the evaluator shall use the correct username (from step
a above) but use a different X509 certificate which is not
associated with the username. The evaluator shall verify that the
session does not establish.

Findings: The TOE does not claim use of X.509 for SSH Client authentication.

217 Test 2: [conditional] If the TOE is acting as SSH Client, the evaluator shall test for a
successful configuration setting of each authentication method as follows:

a. The evaluator shall initiate a SSH session using the authentication
method configured and verify that the session is successfully
established.

b. Next, the evaluator shall use bad authentication data (e.g. incorrectly
generated certificate or incorrect password) and ensure that the
connection is rejected.

218 Steps a-b shall be repeated for each independently configurable authentication
method supported by the server.

Findings: The TOE does not claim SSH Client functionality.

219 Test 3: [conditional] If the TOE is acting as SSH Client, the evaluator shall verify that
the connection fails upon configuration mismatch as follows:

a. The evaluator shall configure the Client with an authentication method
not supported by the Server.

b. The evaluator shall verify that the connection fails.

220 If the Client supports only one authentication method, the evaluator can test this
failure of connection by configuring the Server with an authentication method not
supported by the Client.

Page 62 of 81

Findings: The TOE does not claim SSH client functionality.

221 In order to facilitate this test, it is acceptable for the evaluator to configure an
authentication method that is outside of the selections in the SFR.

Findings: The TOE does not claim SSH client functionality.

4.1.3.7 FCS_SSH_EXT.1.3 TSS

222 The evaluator shall check that the TSS describes how “large packets” are detected
and handled.

Findings: Section 6.2.10 of the [ST] indicates that packets greater than 256KB are dropped.

4.1.3.8 FCS_SSH_EXT.1.3 Tests

223 Test 1: The evaluator shall demonstrate that the TOE accepts the maximum allowed
packet size.

High-Level Test Description

Send a packet from the SSH client to the TOE SSH server that is exactly the claimed maximum
size and show that the TOE accepts the packet.

Send a packet from the SSH client to the TOE SSH server that is one byte larger than the defined
maximum and show the TOE drops the packet.

PASS

224 Test 2: This test is performed to verify that the TOE drops packets that are larger
than size specified in the component.

a. The evaluator shall establish a successful SSH connection with the peer.

b. [TD0732] Next the evaluator shall craft a packet that is slightly larger
than the maximum size specified in this component and send it through
the established SSH connection to the TOE. The packet should not be
greater than the maximum packet size + 16 bytes. If the packet is
larger, the evaluator shall justify the need to send a larger packet.

c. [TD0732] The evaluator shall verify that the packet was dropped by the
TOE. The method of verification will vary by the TOE.
Examples_include reviewing the TOE audit log for a dropped packet
audit or observing the TOE terminates the connection.

Note: Test 2 is performed in the previous test case.

4.1.3.9 FCS_SSH_EXT.1.4 TSS

225 The evaluator will check the description of the implementation of SSH in the TSS to
ensure the encryption algorithms supported are specified. The evaluator will check

Page 63 of 81

the TSS to ensure that the encryption algorithms specified are identical to those listed
for this component.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has found to be
consistent with the selections made in section 5.3.2 of the [ST].

4.1.3.10 FCS_SSH_EXT.1.4 Guidance

226 The evaluator shall check the guidance documentation to ensure that it contains
instructions to the administrator on how to ensure that only the allowed mechanisms
are used in SSH connections with the TOE.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH encryption
algorithms provided by the TOE.

 The section includes a reference to the SSHD(8) Section of the [SOLARIS] / Oracle
Solaris Reference Manuals guidance resource which provides detailed information on
configuration of the SSHD service’s allowed encryption algorithms. The section also
references the SSHD_CONFIG(5) Section of the [SOLARIS] / Oracle Solaris
Reference Manuals, wherein further information on configuring the SSH encryption is
provided.

4.1.3.11 FCS_SSH_EXT.1.4 Tests

227 The evaluator shall perform the following tests.

228 If the TOE can be both a client and a server, these tests must be performed for both
roles.

Note: The TOE does not claim SSH client functionality.

 Test 1: The evaluator must ensure that only claimed algorithms and
cryptographic primitives are used to establish an SSH connection. To verify
this, the evaluator shall establish an SSH connection with a remote endpoint.
The evaluator shall capture the traffic exchanged between the TOE and the
remote endpoint during protocol negotiation (e.g. using a packet capture tool
or information provided by the endpoint, respectively). The evaluator shall
verify from the captured traffic that the TOE offers only the algorithms defined
in the ST for the TOE for SSH connections. The evaluator shall perform one
successful negotiation of an SSH connection and verify that the negotiated
algorithms were included in the advertised set. If the evaluator detects that
not all algorithms defined in the ST for SSH are advertised by the TOE or the
TOE advertises additional algorithms not defined in the ST for SSH, the test
shall be regarded as failed.

The data collected from the connection above shall be used for verification
of the advertised hashing and shared secret establishment algorithms in
FCS_SSH_EXT.1.5 and FCS_SSH_EXT.1.6 respectively.

High-Level Test Description

Connect to the TOE via SSH and subsequently terminate the connection. Review the traffic
between the TOE and the SSH client. Verify the connection was successful, the TOE offers only
the algorithms defined in the ST and that the TOE terminates the connection appropriately.

PASS

Page 64 of 81

 Test 2: For the connection established in Test 1, the evaluator shall terminate
the connection and observe that the TOE terminates the connection.

Note: Test 2 is covered in Test 1 above.

 Test 3: The evaluator shall configure the remote endpoint to only allow a
mechanism that is not included in the ST selection. The evaluator shall
attempt to connect to the TOE and observe that the attempt fails.

High-Level Test Description

Attempt to connect to the TOE via SSH using the 3des-cbc cipher and show the connection fails.

PASS

4.1.3.12 FCS_SSH_EXT.1.5 TSS

229 The evaluator will check the description of the implementation of SSH in the TSS to
ensure the hashing algorithms supported are specified. The evaluator will check the
TSS to ensure that the hashing algorithms specified are identical to those listed for
this component.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has found to be
consistent with the selections made in section 5.3.2 of the [ST].

4.1.3.13 FCS_SSH_EXT.1.5 Guidance

230 The evaluator shall check the guidance documentation to ensure that it contains
instructions to the administrator on how to ensure that only the allowed mechanisms
are used in SSH connections with the TOE.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH server on the
TOE. The section includes a reference to the SSHD section of the [SOLARIS]
guidance resource which provides detailed information on configuration of the SSHD
service’s MAC algorithms and other mechanisms.

4.1.3.14 FCS_SSH_EXT.1.5 Tests

 Test 1: The evaluator shall use the test data collected in FCS_SSH_EXT.1.4,
Test 1 to verify that appropriate mechanisms are advertised.

Note: This test is conducted in FCS_SSH_EXT.1.4, Test 1.

 Test 2: The evaluator shall configure an SSH peer to allow only a hashing
algorithm that is not included in the ST selection. The evaluator shall attempt
to establish an SSH connection and observe that the connection is rejected.

High-Level Test Description

Attempt to connect to the TOE via SSH using the hmac-md5 integrity algorithm with a supported
ciphersuite permitting its use and show that the algorithm is not supported.

PASS

Page 65 of 81

4.1.3.15 FCS_SSH_EXT.1.6 TSS

231 The evaluator will check the description of the implementation of SSH in the TSS to
ensure the shared secret establishment algorithms supported are specified. The
evaluator will check the TSS to ensure that the shared secret establishment
algorithms specified are identical to those listed for this component.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has found to be
consistent with the selections made in section 5.3.2 of the [ST].

4.1.3.16 FCS_SSH_EXT.1.6 Guidance

232 The evaluator shall check the guidance documentation to ensure that it contains
instructions to the administrator on how to ensure that only the allowed mechanisms
are used in SSH connections with the TOE.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH server on the
TOE. The section includes a reference to the SSHD section of the [SOLARIS]
guidance resource which provides detailed information on configuration of the SSHD
service’s key exchange algorithms and other mechanisms.

4.1.3.17 FCS_SSH_EXT.1.6 Tests

 Test 1: The evaluator shall use the test data collected in FCS_SSH_EXT.1.4,
Test 1 to verify that appropriate mechanisms are advertised.

Note: This test is conducted in FCS_SSH_EXT.1.4, Test 1.

 Test 2: The evaluator shall configure an SSH peer to allow only a key
exchange method that is not included in the ST selection. The evaluator shall
attempt to establish an SSH connection and observe that the connection is
rejected.

High-Level Test Description

Attempt to connect to the TOE via SSH using the diffie-hellman-group1-sha1 key exchange
algorithm and show that the algorithm is not supported.

PASS

4.1.3.18 FCS_SSH_EXT.1.7 TSS

233 The evaluator will check the description of the implementation of SSH in the TSS to
ensure the KDFs supported are specified. The evaluator will check the TSS to ensure
that the KDFs specified are identical to those listed for this component.

Findings: Section 6.2.10 of the [ST] contains the necessary information and has found to be
consistent with the selections made in section 5.3.2 of the [ST].

Page 66 of 81

4.1.3.19 FCS_SSH_EXT.1.8 TSS

234 The evaluator shall check the TSS to ensure that if the TOE enforces connection
rekey or termination limits lower than the maximum values that these lower limits are
identified.

Findings: Section 6.2.10 of the [ST] indicates that the TOE will rekey at the lesser of 1 hour or
1 GB of aggregate transmitted/received data.

235 In cases where hardware limitation will prevent reaching data transfer threshold in
less than one hour, the evaluator shall check the TSS to ensure it contains:

a. An argument describing this hardware-based limitation and

b. Identification of the hardware components that form the basis of such
argument.

236 For example, if specific Ethernet Controller or Wi-Fi radio chip is the root cause of
such limitation, these subsystems shall be identified.

Findings: This consideration is not applicable to this TOE.

4.1.3.20 FCS_SSH_EXT.1.8 Guidance

237 The evaluator shall check the guidance documentation to ensure that if the
connection rekey or termination limits are configurable, it contains instructions to the
administrator on how to configure the relevant connection rekey or termination limits
for the TOE.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH server on the
TOE. The section includes a reference to the SSHD section of the [SOLARIS]
guidance resource which provides detailed information on configuration of the SSHD
service’s rekey limit and other parameters.

4.1.3.21 FCS_SSH_EXT.1.8 Tests

238 The test harness needs to be configured so that its connection rekey or termination
limits are greater than the limits supported by the TOE -- it is expected that the test
harness should not be initiating the connection rekey or termination.

 Test 1: Establish an SSH connection. Wait until the identified connection
rekey limit is met. Observed that a connection rekey or termination is initiated.
This may require traffic to periodically be sent, or connection keep alive to be
set, to ensure that the connection is not closed due to an idle timeout.

High-Level Test Description

Set the volume and time-based rekey limits on the TOE to 1GB and 1 minute, respectively. Connect
to the TOE via SSH and, while keeping the session alive, wait until the time-based rekey limit is
met. Verify the TOE initiates a connection rekey or terminates the connection upon reaching the
limit. Ensure that the connection is not closed due to an idle timeout.

Page 67 of 81

High-Level Test Description

PASS

 Test 2: Establish an SSH connection. Transmit data from the TOE until the
identified connection rekey or termination limit is met. Observe that a
connection rekey or termination is initiated.

High-Level Test Description

Set the volume and time-based rekey limits on the TOE to 500MB and 1 hour, respectively. Connect
to the TOE via SSH and, force the TOE to transmit more data back to the SSH client than the client
generates to the TOE. Verify the TOE initiates a connection rekey or terminates the connection
upon reaching the volume-based rekey limit.

PASS

 Test 3: Establish an SSH connection. Send data to the TOE until the
identified connection rekey limit or termination is met. Observe that a
connection rekey or termination is initiated.

High-Level Test Description

Set the volume and time-based rekey limits on the TOE to 500MB and 1 hour, respectively. Connect
to the TOE via SSH and, force the client to transmit more data to the SSH server than the client
receives from the TOE. Verify the TOE initiates a connection rekey or terminates the connection
upon reaching the volume-based rekey limit.

PASS

4.1.4 FCS_SSHS_EXT.1 SSH Protocol - Server

4.1.4.1 FCS_SSHS_EXT.1 TSS

239 No activities.

4.1.4.2 FCS_SSHS_EXT.1 Guidance

240 The evaluator shall check the guidance documentation to ensure that it contains
instructions to the administrator on how to ensure that only the allowed mechanisms
are used in SSH connections with the TOE.

Findings: Section 3.3.1 in [AGD] describes the configuration options for the SSH server on the
TOE. The section includes a reference to the SSHD section of the [SOLARIS]
guidance resource which provides detailed information on configuration of the SSHD
service’s host key algorithms and other mechanisms.

4.1.4.3 FCS_SSHS_EXT.1 Tests

241 [TD0682] The evaluator shall perform the following tests:

242 [TD0682] Test 1: The evaluator shall use a suitable SSH Client to connect to the TOE
and examine the list of server host key algorithms in the SSH_MSG_KEXINIT packet
sent from the server to the client to determine that only the configured server
authentication methods for the TOE were offered by the server.

Page 68 of 81

High-Level Test Description

For each of the claimed host key algorithms (those used by the client to authenticate the server),
attempt to make a good connection to the TOE server and disconnect the session. Verify the client
successfully authenticates the server using the requested/advertised host key algorithm and that
the SSH connection is successful.

PASS

243 [TD0682] Test 2: The evaluator shall test for a successful configuration setting of
each server authentication method as follows. The evaluator shall initiate a SSH
session using the authentication method configured and verify that the session is
successfully established. Repeat this process for each independently configurable
server authentication method supported by the server.

High-Level Test Description

For each supported public key authentication algorithms, attempt to connect to the TOE via SSH
using public/private key as the authentication mechanism. Verify the server successfully
authenticates the client using the appropriate public key algorithm, and that the SSH connection is
successful and subsequently terminated.

Connect to the TOE via SSH using username and password as the authentication mechanism.
Verify the server successfully authenticates the client and that the SSH connection is successful
and subsequently terminated.

PASS

244 [TD0682] Test 3: The evaluator shall configure the peer to only allow an
authentication mechanism that is not included in the ST selection. The evaluator shall
attempt to connect to the TOE and observe that the TOE sends a disconnect
message.

High-Level Test Description

Attempt to connect to the TOE via SSH using an unsupported authentication mechanism. Verify
the connection fails.

PASS

4.1.5 FIA_PMG_EXT.1 Password Management

4.1.5.1 Guidance Documentation

245 The evaluator shall examine the operational guidance to determine that it provides
guidance to security administrators in the composition of strong passwords, and that
it provides instructions on setting the minimum password length.

Findings: Section 3.2.4.2 of [AGD] describes how administrators are able to set the password
policy to enforce various password complexity requirements for administrators and
users.

 The section includes a link to the Securing Systems and Attached Devices in Oracle
Solaris 11.4 section of the [SOLARIS] guidance resource, which provides detailed
information on setting password parameters via the password policy including
minimum password length.

Page 69 of 81

 [AGD], Section 3.2.4.2 also provides a link to the passwd (1) Section in [SOLARIS] /
Oracle Solaris Reference Manuals which includes detailed instructions on setting
specific password complexity requirements and policies using passwd.

 The Managing Password Information subsection of the [SOLARIS] / Securing
Systems and Attached Devices in Oracle Solaris 11.4 guidance resource states,
“Your organization should have a password policy that follows industry standards.
Users must choose their passwords carefully and follow your site's password policy.”

4.1.5.2 Tests

246 The evaluator shall also perform the following test.

 Test 1: The evaluator shall compose passwords that either meet the
requirements, or fail to meet the requirements, in some way. For each
password, the evaluator shall verify that the TOE supports the password.
While the evaluator is not required (nor is it feasible) to test all possible
combinations of passwords, the evaluator shall ensure that all characters,
rule characteristics, and a minimum length listed in the requirement are
supported, and justify the subset of those characters chosen for testing.

High-Level Test Description

Set the password complexity rules and then attempt to set various passwords to show that they are
accepted or not. Verify the password policy configuration and password change attempts are
audited appropriately.

PASS

4.1.6 FIA_X509_EXT.1 X.509 Certificate Validation

4.1.6.1 TSS

247 The evaluator shall ensure the TSS describes where the check of validity of the
certificates takes place. The evaluator ensures the TSS also provides a description
of the certificate path validation algorithm.

Findings: Section 6.4.5 of the [ST] provides information on how X.509 certificates are checked.
The check of validity is performed when “…an X.509 certificate is presented…”.
Section 6.4.5 also claims that X.509 certificates are only presented when using TLS
connections for the log offloading functionality (as per section 6.1.4 of the [ST]) and
code signing for trusted updates.

 The certificates in the path are evaluated according to the various checks and rules
provided in section 6.4.5.

248 The evaluator shall examine the TSS to confirm that it describes the behavior of the
TOE when a connection cannot be established during the validity check of a
certificate used in establishing a trusted channel. If the requirement that the
administrator is able to specify the default action, then the evaluator shall ensure that
the operational guidance contains instructions on how this configuration action is
performed.

Findings: Section 6.4.5 of the [ST] claims that when the TSF cannot establish a connection to
the CRL to determine the validity of a certificate, the TSF shall not accept the

Page 70 of 81

certificate. This is the default behaviour of the TOE and the administrator is not able
to specify the default action.

4.1.6.2 Tests

249 The tests described must be performed in conjunction with the other Certificate
Services evaluation activities, including the uses listed in FIA_X509_EXT.2.1. The
tests for the extendedKeyUsage rules are performed in conjunction with the uses that
require those rules.

 Test 1: The evaluator shall demonstrate that validating a certificate without a
valid certification path results in the function failing, for each of the following
reasons, in turn:

 by establishing a certificate path in which one of the issuing certificates is
not a CA certificate,

 by omitting the basicConstraints field in one of the issuing certificates,

 by setting the basicConstraints field in an issuing certificate to have
CA=False,

 by omitting the CA signing bit of the key usage field in an issuing
certificate, and

 by setting the path length field of a valid CA field to a value strictly less
than the certificate path.

The evaluator shall then establish a valid certificate path consisting of valid
CA certificates, and demonstrate that the function succeeds. The evaluator
shall then remove trust in one of the CA certificates, and show that the
function fails.

High-Level Test Description

Show that when the chain is properly constructed, the TOE TLS client can connect.

For each of the certificates/certificate paths described in the test, show that the TOE fails to connect
to the TLS server when such certificates are used.

PASS

Note: The test case to remove trust in one of the CA certificates and show that the function
fails is performed in FIA_X509_EXT.2.

 Test 2: The evaluator shall demonstrate that validating an expired certificate
results in the function failing.

High-Level Test Description

Using a TOE TLS client, connect to a TLS server which will return an expired certificate and show
the connection fails.

Page 71 of 81

High-Level Test Description

Using an expired CA certificate in the trust store, show that the TOE TLS client fails to connect to
the TLS server.

PASS

 [TD0742] Test 3: (conditional, performed except for use cases identified in
exceptions that cannot be configured to allow revocation) The evaluator shall
test that the TOE can properly handle revoked certificates – conditional on
whether CRL, OCSP, OCSP stapling, or OCSP multi-stapling is selected; if
multiple methods are selected, and then a test is performed for each method.
The evaluator has to only test one up in the trust chain (future revisions may
require to ensure the validation is done up the entire chain). The evaluator
shall ensure that a valid certificate is used, and that the validation function
succeeds. The evaluator shall then attempt the test with a certificate that will
be revoked (for each method chosen in the selection) and verify that the
validation function fails.If the exceptions are configurable, the evaluator shall
attempt to configure the exceptions to allow revocation checking for each
function indicated in FIA_X509_EXT.2.

High-Level Test Description

Ensure the current CRL is empty.

Verify that a TLS connection is successful with empty CRLs (i.e. no revoked certificates).

Revoke the leaf certificate and attempt the connection again. Verify the connection now fails due
to the certificate being revoked.

PASS

 Test 4: If any OCSP option is selected, the evaluator shall present a
delegated OCSP certificate that does not have the OCSP signing purpose
and verify that validation of the OCSP response fails. If CRL is selected, the
evaluator shall configure the CA to sign a CRL with a certificate that does not
have the cRLsign key usage bit set and verify that validation of the CRL fails.

High-Level Test Description

Using the TOE TLS client, connect to the TLS server and verify that the TLS client will fail to validate
the CRL when the CRL is signed by a CA which does not have the proper policy flag extension set.

PASS

 Test 5: (Conditional on support for EC certificates as indicated in
FCS_COP.1/SIG). The evaluator shall establish a valid, trusted certificate
chain consisting of an EC leaf certificate, an EC Intermediate CA certificate
not designated as a trust anchor, and an EC certificate designated as a
trusted anchor, where the elliptic curve parameters are specified as a named
curve. The evaluator shall confirm that the TOE validates the certificate chain.

High-Level Test Description

Construct a chain of three ECDSA certificates: a leaf, an intermediate CA and a trust anchor. Show
that the leaf and chain are valid when connected to. Create a clone of the Intermediate CA, such

Page 72 of 81

High-Level Test Description

that the public key is explicitly defined rather than being a named curve. Show that the leaf and
chain are not validated correctly when connected to.

PASS

 Test 6: (Conditional on support for EC certificates as indicated in
FCS_COP.1/SIG). The evaluator shall replace the intermediate certificate in
the certificate chain for Test 5 with a modified certificate, where the modified
intermediate CA has a public key information field where the EC parameters
uses an explicit format version of the Elliptic Curve parameters in the public
key information field of the intermediate CA certificate from Test 5, and the
modified Intermediate CA certificate is signed by the trusted EC root CA, but
having no other changes. The evaluator shall confirm the TOE treats the
certificate as invalid.

Note: The functionality described in Test 6 is tested in the previous test case.

4.1.7 FIA_X509_EXT.2 X.509 Certificate Authentication

4.1.7.1 TSS

250 The evaluator shall check the TSS to ensure that it describes how the TOE chooses
which certificates to use, and any necessary instructions in the administrative
guidance for configuring the operating environment so that the TOE can use the
certificates.

Findings: Section 6.4.5 claims that all X.509 certificates are maintained within the trust store,
found under the /etc/certs/CA directory.

251 The evaluator shall examine the TSS to confirm that it describes the behavior of the
TOE when a connection cannot be established during the validity check of a
certificate used in establishing a trusted channel. If the requirement states that the
administrator specifies the default action, then the evaluator shall ensure that the
operational guidance contains instructions on how this configuration action is
performed.

Findings: Section 6.4.5 of the [ST] claims that when the TSF cannot establish a connection to
the CRL to determine the validity of a certificate, the TSF shall not accept the
certificate.

4.1.7.2 Tests

252 The evaluator shall perform Test 1 for each function listed in FIA_X509_EXT.2.1 that
requires the use of certificates:

 Test 1: The evaluator shall demonstrate that using a certificate without a valid
certification path results in the function failing. Using the administrative
guidance, the evaluator shall then load a certificate or certificates needed to
validate the certificate to be used in the function, and demonstrate that the
function succeeds. The evaluator then shall delete one of the certificates, and
show that the function fails.

Page 73 of 81

High-Level Test Description

Show that when the chain is properly constructed, the TOE TLS client can connect to the server.
Remove trust in one of the CA certificates and show that the function fails.

PASS

 Test 2: The evaluator shall demonstrate that using a valid certificate requires
that certificate validation checking be performed in at least some part by
communicating with a non-TOE IT entity. The evaluator shall then manipulate
the environment so that the TOE is unable to verify the validity of the
certificate, and observe that the action selected in FIA_X509_EXT.2.2 is
performed. If the selected action is administrator-configurable, then the
evaluator shall follow the operational guidance to determine that all supported
administrator-configurable options behave in their documented manner.

High-Level Test Description

With the TOE configured to do CRL checking via the rsyslog-crl service, initiate a TLS connection
from the rsyslog service on the TOE to the evaluator’s workstation. Show that the TOE
communicates with the CRL server on service startup to obtain an up-to-date copy of the CRL, and
that the subsequent TLS connection is successful.

Repeat the above with the CRL server on the evaluator’s workstation stopped. Verify the TOE fails
to connect to the CRL server and that the subsequent TLS connection to the logging server fails
(no connection initiated by the TOE).

PASS

4.1.8 FTP_TRP.1 Trusted Path

4.1.8.1 TSS

253 The evaluator shall examine the TSS to determine that the methods of remote TOE
administration are indicated, along with how those communications are protected.
The evaluator shall also confirm that all protocols listed in the TSS in support of TOE
administration are consistent with those specified in the requirement, and are
included in the requirements in the ST.

Findings: Section 6.8.2 of the [ST] indicates that the TOE offers one method of remote
administration: via a CLI protected by SSH. The SSH protocol is selected in
FTP_ITC_EXT.1 (for use in FTP_TRP.1) in section 5.3.8 of the [ST].

4.1.8.2 Guidance Documentation

254 The evaluator shall confirm that the operational guidance contains instructions for
establishing the remote administrative sessions for each supported method.

Findings: Section 3.2.1 of the [AGD] describes the usage of SSH to establish remote
administrative sessions.

 [SOLARIS] / Managing Secure Shell Access in Oracle Solaris 11.4 and [SOLARIS] /
Oracle Solaris Reference Manuals / ssh (1) provide detailed instructions on
establishing remote administrative sessions with the TOE via SSH.

Page 74 of 81

4.1.8.3 Tests

255 The evaluator shall also perform the following tests:

 Test 1: The evaluators shall ensure that communications using each
specified (in the operational guidance) remote administration method is
tested during the course of the evaluation, setting up the connections as
described in the operational guidance and ensuring that communication is
successful.

Note: The evaluator followed the administrative guidance to set up the connections to
ensure that communication was successful.

 Test 2: For each method of remote administration supported, the evaluator
shall follow the operational guidance to ensure that there is no available
interface that can be used by a remote user to establish remote
administrative sessions without invoking the trusted path.

High-Level Test Description

Perform a port scan of the device and determine if there are any remote administrative interfaces
available outside of the SSH CLI interface.

PASS

 Test 3: The evaluator shall ensure, for each method of remote administration,
the channel data is not sent in plaintext.

High-Level Test Description

Using a packet sniffer, show that the channel data is not being sent in plaintext for each of the TSFI.

PASS

 Test 4: The evaluator shall ensure, for each method of remote administration,
modification of the channel data is detected by the TOE.

High-Level Test Description

Using a custom tool, modify traffic destined to the TOE’s remote administration interfaces and show
that the modifications are detected.

PASS

256 Additional evaluation activities are associated with the specific protocols.

Page 75 of 81

5 TOE Security Assurance Requirements

5.1 Class ASE: Security Target Evaluation

257 As per ASE activities defined in [CEM] plus the TSS assurance activities defined for
any SFRs claimed by the TOE.

Findings: See above sections and content in the Evaluation Technical Report (ETR).

5.2 Class ADV: Development

258 The information about the TOE is contained in the guidance documentation available
to the end user as well as the TOE Summary Specification (TSS) portion of the ST.
The TOE developer must concur with the description of the product that is contained
in the TSS as it relates to the functional requirements. The Assurance Activities
contained in Section 5.2 should provide the ST authors with sufficient information to
determine the appropriate content for the TSS section.

Findings: See above sections and content in the Evaluation Technical Report (ETR).

5.3 Class AGD: Guidance Documents

259 The guidance documents will be provided with the developer’s security target.
Guidance must include a description of how the authorized user verifies that the
Operational Environment can fulfil its role for the security functionality. The
documentation should be in an informal style and readable by an authorized user.

260 Guidance must be provided for every operational environment that the product
supports as claimed in the ST. This guidance includes

 instructions to successfully install the TOE in that environment; and

 instructions to manage the security of the TOE as a product and as a component
of the larger operational environment.

261 Guidance pertaining to particular security functionality is also provided; specific
requirements on such guidance are contained in the assurance activities specified
with individual SFRs where applicable.

Findings: See above sections and content in the Evaluation Technical Report (ETR).

Page 76 of 81

5.3.1 AGD_OPE.1 Operational User Guidance

262 Some of the contents of the operational guidance will be verified by the evaluation
activities in Section 5.2 [of the PP] and evaluation of the TOE according to the CEM.
The following additional information is also required.

263 The operational guidance shall contain instructions for configuring the password
characteristics, number of allowed authentication attempt failures, the lockout period
times for inactivity, and the notice and consent warning that is to be provided when
authenticating.

Findings: Section 3.2.4.2 of the [AGD] describes how administrators are able to set the
password policy to enforce various password complexity requirements for
administrators and users.

 Section 3.2.4.1 of the [AGD] describes how administrators are able to configure the
number of allowed authentication attempt failures.

 Section 3.2.2 of the [AGD] describes how administrators are able to configure the
lockout period times for inactivity.

 The subsection, Securing Logins and Passwords of the [SOLARIS] / Securing
Systems and Attached Devices in Oracle Solaris 11.4 guidance resource, provides
instructions on configuring the notice and consent warning to be provided prior to
authentication.

264 The operational guidance shall contain step-by-step instructions suitable for use by
an end-user of the VS to configure a new, out-of-the-box system into the configuration
evaluated under this Protection Profile.

Findings: Please refer to the identical work unit described in AGD_PRE.1 below.

265 The documentation shall describe the process for verifying updates to the TOE, either
by checking the hash or by verifying a digital signature. The evaluator shall verify that
this process includes the following steps:

 Instructions for querying the current version of the TOE software.

Findings: Section 2.3 of [AGD] provides instructions for querying the current version of the TOE
software.

 For hashes, a description of where the hash for a given update can be
obtained. For digital signatures, instructions for obtaining the certificate that
will be used by the FCS_COP.1/SIG mechanism to ensure that a signed
update has been received from the certificate owner. This may be supplied
with the product initially, or may be obtained by some other means.

Findings: The Securing Systems and Attached Devices in Oracle Solaris 11.4 and Updating
Systems and Adding Software in Oracle Solaris 11.4 sections of the [SOLARIS]
guidance resource provides detailed information on the usage/configuration of
certificates for digital signature verification of updates.

Page 77 of 81

 Instructions for obtaining the update itself. This should include instructions for
making the update accessible to the TOE (e.g., placement in a specific
directory).

Findings: Section 2.4 of the [AGD] provides instructions on how updates are obtained. The
Updating Systems and Adding Software in Oracle Solaris 11.4 section of the
[SOLARIS] guidance resource provides detailed information about the update
procedure/configuration.

 Instructions for initiating the update process, as well as discerning whether
the process was successful or unsuccessful. This includes generation of the
hash/digital signature.

Findings: Section 2.4 of the [AGD] provides instructions on how updates are initiated and how
to discern the result of the update process. The Updating Systems and Adding
Software in Oracle Solaris 11.4 section of the [SOLARIS] guidance resource provides
detailed information about the update procedure/configuration.

5.3.2 AGD_PRE.1 Preparative Procedures

266 As indicated in the introduction above, there are significant expectations with respect
to the documentation—especially when configuring the operational environment to
support TOE functional requirements. The evaluator shall check to ensure that the
guidance provided for the TOE adequately addresses all platforms (that is,
combination of hardware and operating system) claimed for the TOE in the ST.

Findings: The [AGD], [SPARC], [SOLARIS] and [T8LIB] guidance resources are specific to the
Oracle VM Server for SPARC 3.6 and Solaris 11.4 OS, which is the only claimed
platform for the TOE in the [ST].

267 The operational guidance shall contain step-by-step instructions suitable for use by
an end-user of the VS to configure a new, out-of-the-box system into the configuration
evaluated under this Protection Profile.

Findings: The evaluator used the [AGD], [SPARC], [SOLARIS] and [T8LIB] guidance resources
to configure a new, out-of-the-box system into the configuration evaluated under this
Protection Profile, in a similar manner as would be done by an end-user of the VS,
and determined the provided instructions were suitable for this purpose.

5.4 Class ALC: Life-Cycle Support

268 At the assurance level specified for TOEs conformant to this PP, life-cycle support is
limited to an examination of the TOE vendor’s development and configuration
management process in order to provide a baseline level of assurance that the TOE
itself is developed in a secure manner and that the developer has a well-defined

Page 78 of 81

process in place to deliver updates to mitigate known security flaws. This is a result
of the critical role that a developer’s practices play in contributing to the overall
trustworthiness of a product.

5.4.1 ALC_CMC.1 Labeling of the TOE

269 The evaluator shall check the ST to ensure that it contains an identifier (such as a
product name/version number) that specifically identifies the version that meets the
requirements of the ST.

Findings: The [ST] contains the product name and reference in section 1.2. The same
information can be found in section 1.3.2 of [AGD].

 Oracle maintains a website for advertising Solaris and the information in the ST is
sufficient to distinguish the product. Specifically, the version on the web site is 11.4.
The SRUs and IDRs are only available to those with support contracts and they would
be able to acquire the TOE through those channels.

 The documentation provided by Oracle for the TOE is clearly designated for Solaris
11.4.

270 The evaluator shall check the AGD guidance and TOE samples received for testing
to ensure that the version number is consistent with that in the ST.

Findings: The TOE was verified using the instructions provided in section 2.3 of the [AGD] and
 was found to be consistent with the versions claimed in the [ST].

271 If the vendor maintains a website advertising the TOE, the evaluator shall examine
the information on the website to ensure that the information in the ST is sufficient to
distinguish the product.

Findings: Oracle maintains a website for advertising Solaris and Oracle VM Server for SPARC.
The evaluator examined the website and determined that the information in the [ST]
is sufficient to distinguish the product to distinguish the product amongst the
information provided on the website.

 Specifically, the version of Solaris on the web site is 11.4 and the version of Oracle
VM Server for SPARC is 3.6. The specific SRUs and IDRs are only available to those
with support contracts and they would be able to acquire the TOE through those
channels.

5.4.2 ALC_CMS.1 TOE CM Coverage

272 The evaluator shall ensure that the developer has identified (in public-facing
development guidance for their platform) one or more development environments
appropriate for use in developing applications for the developer’s platform. For each
of these development environments, the developer shall provide information on how
to configure the environment to ensure that buffer overflow protection mechanisms in
the environment are invoked (e.g., compiler and linker flags). The evaluator shall
ensure that this documentation also includes an indication of whether such
protections are on by default, or have to be specifically enabled. The evaluator shall
ensure that the TSF is uniquely identified (with respect to other products from the TSF

Page 79 of 81

vendor), and that documentation provided by the developer in association with the
requirements in the ST is associated with the TSF using this unique identification.

Findings: The Solaris 11.4 documentation library is provided in [SOLARIS]. Within this library,
there are significant resources available to developers. Specifically, in the section
“Developing Applications For Use With Oracle Solaris”, there is information about
several application development environments.

 For application development environments which produce binary machine code, the
linker ld(1) provides link-time flags to explicitly enable aslr, nxstack and nxheap
security extensions (-z sx=aslr -z sx=nxstack -z sx=nxheap). Note, however, that
these security extensions are available by default in the TOE even if these flags are
not provided (as per sxadm(8) which can be found by reviewing [SOLARIS] under
“man pages section 8: System Administration Commands”).

 The nxstack, nxheap and aslr link-time security extensions are available by default in
the TOE even if these flags are not provided (as per the information provided in
sxadm(8) which can be found by reviewing the section, “man pages section 8: System
Administration Commands” in [SOLARIS].

 The Oracle VM Server for SPARC 3.6 documentation library is provided in [SPARC].
Within this library, there are significant resources available to developers. Specifically,
in the section “Oracle VM Server for SPARC 3.6 Developer's Guide” there is
information about several application development environments and security
considerations, specific to the VM server. Note that protection mechanisms are
inherited from the underlying Solaris 11.4 OS.

 The evaluator determined that adequate information is given within the developer
resources such that each TSF is uniquely identified their mapping to specific
requirements in the [ST] is not ambiguous.

5.4.3 ALC_TSU_EXT.1 Timely Security Updates

273 This component requires the TOE developer, in conjunction with any other necessary
parties, to provide information as to how the VS is updated to address security issues
in a timely manner. The documentation describes the process of providing updates
to the public from the time a security flaw is reported/discovered, to the time an update
is released. This description includes the parties involved (e.g., the developer,
hardware vendors) and the steps that are performed (e.g., developer testing),
including worst case time periods, before an update is made available to the public.

274 ALC_TSU_EXT.1.1C: The description shall include the process for creating and
deploying security updates for the TOE software/firmware.

Findings: Section 5.4.2 of the [ST] provides links to the developer’s “timely security update
methodology”.

275 ALC_TSU_EXT.1.2C: The description shall express the time window as the length of
time, in days, between public disclosure of a vulnerability and the public availability
of security updates to the TOE.

Findings: The developer’s “timely security update methodology” website described in section
5.4.2 of the [ST] notes that it is Oracle’s policy to announce security fixes as much as
possible only when the fixes are available for all affected and supported product
version and platform combinations. The same website further notes that “Minor

Page 80 of 81

delays in patch availability for up to two weeks from the announcement date generally
due to technical issues during the production or testing of the patch”.

276 ALC_TSU_EXT.1.3C: The description shall include the mechanisms publicly
available for reporting security issues pertaining to the TOE.

Findings: Reporting is described in the “security vulnerability reporting procedures” website
described in section 5.4.2 of the [ST]. The suggested method in the website is
emailing the “secalert_us@oracle.com”. The PGP key is published with the email
address.

5.5 Class ATE: Tests

277 Testing is specified for functional aspects of the system as well as aspects that take
advantage of design or implementation weaknesses. The former is done through
ATE_IND family, while the latter is through the AVA_VAN family. At the assurance
level specified in this PP, testing is based on advertised functionality and interfaces
with dependency on the availability of design information. One of the primary outputs
of the evaluation process is the test report as specified in the following requirements.

5.5.1 ATE_IND.1 Independent Testing – Conformance

278 Testing is performed to confirm the functionality described in the TSS as well as the
administrative (including configuration and operation) documentation provided. The
focus of the testing is to confirm that the requirements specified in Section 5.1 are
being met, although some additional testing is specified for SARs in Section 5.2. The
evaluation activities identify the additional testing activities associated with these
components. The evaluator produces a test report documenting the plan for and
results of testing, as well as coverage arguments focused on the platform/TOE
combinations that are claiming conformance to this PP.

279 The evaluator shall prepare a test plan and report documenting the testing aspects
of the system. While it is not necessary to have one test case per test listed in an
evaluation activity, the evaluators must document in the test plan that each applicable
testing requirement in the ST is covered.

280 The Test Plan identifies the platforms to be tested, and for those platforms not
included in the test plan but included in the ST, the test plan provides a justification
for not testing the platforms. This justification must address the differences between
the tested platforms and the untested platforms, and make an argument that the
differences do not affect the testing to be performed. It is not sufficient to merely
assert that the differences have no affect; rationale must be provided. If all platforms
claimed in the ST are tested, then no rationale is necessary.

281 The test plan describes the composition of each platform to be tested, and any setup
that is necessary beyond what is contained in the AGD documentation. It should be
noted that the evaluators are expected to follow the AGD documentation for
installation and setup of each platform either as part of a test or as a standard pre-
test condition. This may include special test drivers or tools. For each driver or tool,
an argument (not just an assertion) is provided that the driver or tool will not adversely
affect the performance of the functionality by the TOE and its platform. This also
includes the configuration of cryptographic engines to be used. The cryptographic

Page 81 of 81

algorithms implemented by these engines are those specified by this PP and used by
the cryptographic protocols being evaluated (IPsec, TLS/HTTPS, SSH).

282 The test plan identifies high-level test objectives as well as the test procedures to be
followed to achieve those objectives. These procedures include expected results. The
test report (which could just be an annotated version of the test plan) details the
activities that took place when the test procedures were executed, and includes the
actual results of the tests. This shall be a cumulative account, so if there was a test
run that resulted in a failure; a fix installed; and then a successful re-run of the test,
the report would show a “fail” and “pass” result (and the supporting details), and not
just the “pass” result.

Findings: Please refer to Tests assurance activities above in the previous sections which satisfy
this work unit. The detailed results are contained in the submitted Test Plan and a
summary of the testing activities is further described within the Evaluation Technical
Report (ETR).

 Platform coverage and equivalency arguments are provided in the Test Plan.

 Explicit identification of cryptographic engines used to provide algorithms for the in-
scope cryptographic operations and protocols is included in the Test Plan.

 The Test Plan maintains a “journal” of the test results where necessary to showcase
failures and actions taken to bring the test results up to a passing grade.

5.6 Class AVA: Vulnerability Assessment

283 For the first generation of this Protection Profile, the evaluation lab is expected to
survey open sources to learn what vulnerabilities have been discovered in these
types of products. In most cases, these vulnerabilities will require sophistication
beyond that of a basic attacker. Until penetration tools are created and uniformly
distributed to the evaluation labs, evaluators will not be expected to test for these
vulnerabilities in the TOE. The labs will be expected to comment on the likelihood of
these vulnerabilities given the documentation provided by the vendor. This
information will be used in the development of penetration testing tools and for the
development of future PPs.

284 As with ATE_IND the evaluator shall generate a report to document their findings with
respect to this requirement. This report could physically be part of the overall test
report mentioned in ATE_IND, or a separate document. The evaluator performs a
search of public information to determine the vulnerabilities that have been found in
virtualization in general, as well as those that pertain to the particular TOE. The
evaluator documents the sources consulted and the vulnerabilities found in the report.
For each vulnerability found, the evaluator either provides a rationale with respect to
its non-applicability or the evaluator formulates a test (using the guidelines provided
in ATE_IND) to confirm the vulnerability, if suitable. Suitability is determined by
assessing the attack vector needed to take advantage of the vulnerability. For
example, if the vulnerability can be detected by pressing a key combination on boot-
up, a test would be suitable at the assurance level of this PP. If exploiting the
vulnerability requires expert skills and an electron microscope, for instance, then a
test would not be suitable and an appropriate justification would be formulated.

Findings: A Vulnerability Test Plan was generated as part of the evaluation effort.

